

ISIS DOCUMENTATION: RELEASE 1

Kenneth P. Birman
Thomas A. Joseph

Frank Schmuck

87-849
July 1987

LECTE
JUL 3 0 1987 11

Department of Computer Science
Cornell University
Ithaca, New York 14853-7501

APPROVED FOR PUBLIC RELEASE

DISTRIBUTION UNLIMITED

This work was supported by the Defense Advanced Research Projects agency (DoD)
under ARPA order 5378, Contract N00140-87-C-8904, and by the National Science Founda-
tion under grant DCR-8412582. The views, opinions and findings contained in this report
are those of the authors and should not be construed as an official Department of Defense
position, policy, or decision.

SECURITY CLASSIFICATION OF THIS PAGE I Aor poved
REPORT DOCUMENTATION PAGE -4 I.gj/~ t O0"mINVoO7O40-OI88

is. REPORT SECURITY CLASSIFICA7ON b. RESTRICTIVE MARKINGS Ep oe u 018

Unclassified _______________________

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILAILITY OF REPORT

2b D CLSSIICATON/DOWGRADNG CHEULEApproved for Public Release
2b DCLASIFCATIN IDOWGRADNG CHEULEDistribution Unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Kenneth P. Birman, Assist. Pro (iaplcbe
CS Devt., Cornel ___________________________

6c. ADDRESS (C0ty, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

4105 Upson Hall Defense Advanced Research, Project Agency
Cornell University Attn: TIO/Admin, 1400 Wilson Blvd.
Ithaca, NY 14853 Arlington, VA 22209-2308

Ba. NAME OF FUNDING,/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION I(of applicable) ARPA Order 5378

DARPA I STO j _______ Contract N00140-87-C-8904

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM ~PROJECT ITASK ~ WORK UNIT
See 7b. ELEMENT NO. NO: NO. ACCESSION NO.

11. TITLE (include Security Classification)

ISIS Documentation: Release 1

12-. PERSONAL AUTHOR(S)
Kenneth P. Birman, Thomas A. Joseph, Frank Schmuck

13a TYE O RPOR l~ TME OVEED4, DATE OF REPORT (Year, Month,.Day) PGE COUNT

Technical (Special) T FROM _ TO _ July 978

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

S 20 DISTRIBUTION,/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
[UNCLASSIFIED/UNLIMITED 0 SAME AS RPT 0 DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Cd)22c OFFICE SYMBOL

DO FORM 1473. 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.'

%

ISIS DOCUMENTATION: RELEASE 1.*

Kenneth P. Birman
Thomas A. Joseph
Frank Schmuck

Department of Computer Science
Cornell University
Ithaca, NY 14853

July 1987

Accesion Frr

NTIS CRAM& I
DTIC TA~3 El

Ui;arroi lc,.d ul

FDiAt

This work was supported y the-Defense Advanced Research Projects agency (DoD) under ARPA
order 5378, Contract NOO 140-&7-C-8904, and by the National Science Foundation under grant
DCR-8412582. The views, opinions and findings contained in this report are those of the authors
and should not be construed as an official Departrifent of Defense position, policy, or decision.

Client processes Group view database

Recovery actions database

client tasks

pgroup view > cache:

• < pgroup view >

pgroup view>
I < pgroup view >

~Broadcast tasks and

address resolution tasks

<site view>

UDP packets

ISIS at a site

*2 * .

ADDRFSSNGcnL) DunmRIUTED SYSEMS TIoim~r ADRESSINGCFK

1. Syosis
A discussion of addressing in the 10I system.

#indlude <issd.h>

3Type ddululm
From the bottom up, ISMS knows about site, sWt Umar and views, process addresses, grou~p
ad&=eses, and group views. There is also a notion of raert sites, processes, and groups, which
can onl be seemed using special protocols.

1. Currently, MSS only -mup V aW local sites. A local aite is identified by a two-byte sequec
corsistizig of a altsnumber, in the range 1-127, and a site-incrnation, also in the range 1-
12. This sequnc is referred to a a site-id in the MSS system. In future versions of the
system, sits-numbers will be expanded to indude a concept of local sites, long-distnc sites,
and remote sites. In thi extenision, sits-idswil be 4 bytes long. Two bytes will 1-rpeent
the churer numer , one byte the sits-number, and one byte the site incarnation number.
LoAl sites will have a duster number of 0. vcgit ites ame intened to represent
sites within the some geographical are but amcsible at somewhat highe cost, e.g. through
a gateway. The duster number for these sites will be in the range 0-127. Remote sites are
assumed to be msceible only over genuinely long-istac connections an will use a
hierarchical numbering scheme. A remnote sit umber will be represented by duster
number in the range 128255 and must be mnapped through a mow table to obtain remote
addressing information, using a method that is at present unspecified. In most cases special
protocols will be used to communicate with remote sites. Process groups will not be aflowed
cros long-distnc communication boundaries, but medimnisms for linldzng copes of a group
that lives on both aides of sudsh a boundary will be provided.

The number of mites in a duster is intentionally kept nmall to constrol the cost of the Sr
protocols. The actual deL1U"npsiio of sites inolusters is tranparent to the MSS user, but

cnaffect performc: wheever possible, processes that inte -rc- heavily with one-another
should be located within the sme duster. In addition, it is undesirable for dlusters to "parti
tion" in such a nmmne that co-muication betw=e two subgroups of the duster is tem-
porarily imposfa. For example, if a duster contains a single gateway, WSS may block
(hang during period& when the gateway is down. This problem cm be circumvented by
introducing redundant Iommunican gateways whenever possible.

Several pre-dined mumo allow one to P- Id me! fields from a sltjd uid. SITE!O(sd),
SrrLINCARN(sid) and SIrr.O.LRMsid). The mo MAKL,_lTEJD(sits-no,
incon) can be useid to ezam a local sits-id.

2. A sits-list is a list of ofte-id's terminated by a null sits-id. Note that SITEYO(usd) is null
only for a null site-id. Ibis is useful when scanning the elements of a sits-list.

3. A site view coniss of a list of sits-id's and associated information maintained by the system
failure detection mrodue for a single MSS duster. In particular, a view has a view-id
number, and all sites in a duster observe the smm sequnce of views. It cnbe assumed
that the mites in a sits-view wre listed in order of age (oldest first) and that all observers see
the smm sequn of sits-view. See SVIEW(7K) and VSYNC(FK for details.

4. A process address in ISIS consists of a sits-id, a type field containing the rcr wta--t ISAPID, a
unique proces-id number which is a short integer used by the operating system at that site
to identify a process running on its site, and an entry point within that process, which may
be null. The procedure MAK&-ADDRESS(sittincr,pid,entry) onbe used to make a
process address. The crepnigfield names are site, eW,,, process, envy. The site

ADD L5SING(MK Dig UFED SYSTEM5 Tom=K~ ADDRESSINGTMK

field will never be null, he this is sometimes. used to detect the end of a list of addresses.
Certain predefined id-numbers are used to identify system processes. For example, the
defined symbols PROTOCOLS, REXEC, RMGR, and NEWS are automatically mapped to
the process-id for the orresponding service at a given destination site. Additional system-
wide process numbers will be added as the ISIS system evolves. These addresses wre defined
in generic-address.h.

7be function anp..MdreusO is provided to facilitate ad cssomparisons. Invoked a
anp..address(al,a2), where al and a2 are pointers to addresses, this returns 0 if al and 82
wre the same, a negative number if al and a2 differ and al is "smaller", and a positive
number if al is lage. Thus, although motusers would just compare the result with 0,
capaddresso is comnpatible with the stendlard LNM qucsort(Q utility. The caller of
anp..address should be aware that an address with the entry field specified a 0 is treated
specially: such an entry is a wild-card that will match any other entry value. Two addresses
with non-zero entry numbers must match exactly, however.

5. A group address is an adesused to identify a process group in MSS. Such an adrscon-
sists of a site-id for the site, a type field ontaining the constant ISAGID, a 16-bit group id,
and an entry point dwa must be the wne for aN mearmbers ofd MerV=V. Notice that group and
procesaess both have the same format; if desired, a process address may be thought
of a a group ontaining on member. Group addresses we created usinig the pg~ereateo
request, but because of subsequent jon, leave and failure events the group may subsequently

mgaeto other sites in the system. Consequently, group adeeswe usually obtained
using pg.jookupo. 7his implies that the site-id in the group address is not necessarily useful
for determining where memibers of the group reside (but see als PGROUPS(TK)).

4. En"rypobb
Each process in the ISIS system is understood to accpt messages at a variety of entry points. An
entry point is a one-byte unsigned intege.. Some entry points have standard values:
GENERIC..RCV..REFLY is the entry point to wicdh a reply message con be sent,
GENERICTKJCHKPT is the entry point used by the checpoint toolkit routine to trigger a
checkpoint, etc. These we defined in generkc-adrmss.h, which is automatically included when
"d.h" is included into a program. In addition, eadh process con define additional entry points of
its own. To avoid accidental conflict with these generic addresses, these user-defined entry points
should be assigned entry numbers greater than or equal to LMLO..ASE, a onstant also defined
in that file. Notice that different processes can interpret the same entry "number" in different
ways.

A rcsis mtyenr-oit mber outine,"pibe name");

Many of the toolkit routines install their own handlers (for the CIEERIC entries) when issinito
is called. On arrival of a message, the crresponding entry will be invoked as:

routine(tap)
mesag mp;

The message is automatically deletedl after the routine terminates, uinless nagjmicrfwuntO has
been called prior to returning. If a message arrives in a prooms and the process has not specified

routine to handle messages to the specified entry point, the message is discarded and an error
message is printed on the stderr output chaninel.
See PGROUP(TK for information on manipulattag process groups, ENTRYCIK for more inf or-
mation on entry points, NMAGESUfl) for more information on messages, and DCAST(TK)

- - * 4 -

ADDSSG~ DMRUTED SYSTEMS TOOLOT ADDIESSING(F

for information on seeng messas to the members of one or more process groups.

S. RPC I I'radum
An MP style interaction occur when a process sends a message to another process then awaits a
reply. MSIS supports this mode of Jinteramton, and will even provide stub genrators to compile
frvin a "nice'" lookin RPC syntax into the message generation and unpmddcng medhanisms needed
to map this into the above facility. To identify the RPC "session", a session-id number is placed
in t message at the time it is sent (see MESSACESKM). 7he sending task then blocks await-
ing a reply with this session-id nmber; session-id numbers awe 32-bit integers and should not be
re-used. Thus, a pending RPIC has an address oxisisting of the Kddress of t caller process
together with the id of the session. To send a reply, the replying task creates a message contain-
ing the reply value (field name FLDANW) the length of this field (RLD-ALEN) and the
session-id number identifying the session (FLD-.SESSON), and then transmits this message to the

sedrof the RPC In genesral, MSS does not assume that it is an error to smd the sme reply
more then am or to send multiple replies to a task tha expected)ost one reply. In these caes,
the superfluous replies we discarded sWently.

6.PI Ing an ad&=
The routine paddr(addr) will print t address pointed to be addr, paddrs(alist) will prin t

4 members of a null-termiinated address list, and poite(sid) will print t site nome and incarnation
for a site=id. Whenever possile, entry numbers we pinted in their text form, but if paddr() is

*called in a place that Just doesn't knw t tt form for an entry point, the numeric version is
pitdinstead. 7bis is true for process-id's too.

7. Sh iiian.
te array site-iamesfj gives, for a site-id, t printble ame of thatnsite. These names wre Sa-

ally taken from a Edle used during startup of the system (see FILESOWK, STARTPTK).

AUTHEN(TK) DISTRIBUTED SYSTEIM TOOLIT AUTIEN(K)

1. Syngpd
A meduaismn for restricting amess to a group.

#idnude <isis/d.h>

m (raue tin)O;

Nmpmft(WO)
address who;

mLrokcperm(who)
addres whbo;

3. Discm
Normally, any pmess in possession of the address o a group m issue calls to tha group. Som
applicabons will ne man protem on than this, however, und the auhentio tool gives them
that optq L
To enable the tool, roll auequhsLverify(routine), giving a routine that will verify the legality of
requesm fhm unknown callers. The routine is invoked n:

-p)
meag mp;

and should return 0 if the request is legal. A reply(mp,0,0,0) is sent by the mAthentiction service
if the routin retur. -1. No reply is sent if the routine turm some other value. To avoid
uinmay work, the routine au..permito cun be called to indicate that the designated caller is
pemite to smd arbitrary requests to thb proces. AD messages from that proces will be
allowed trugh wuevokpermO removes an address bom the prilaged culler list; subsequent
messages from that pow will be poused though the verifcstion procdure.

4. gubkiu.
Th verificaton procedure s permitted to cu Lork.elayed, tjork_ggen, Lig.dlsayed and
LsILurgent, but may not cul Lwvt or try to do an RFC or bro.mt. ibis is beeuse it is run
from the mn tirce a cof - nol as a task.

,k"

"Fm

BBOARDS(TK) DTRIUTED SYSMA TOOLIrT BBOARD(I)

1. Synsuh
A package of routnes implementing distributed bulletin boards a described in our tedmical
report. These routines will be implemented during the summer or fall of 1987. The interface will
be a subroudne, one but otherwise very simil to the one disssed in the paper. Initially, only C
will have acss to the bbowd faclity, but versiom for other languages (espeially LISP) will be
provided eventually.

I.b

-a,,

BCAST(TM DISTREBUTED SYSTEM TOOLKrr BCAST(TK)

1. Synas

A package of routi implatenting distributed broadmts of various flavors, and with a variety
of destiiation addressing modes.

2. Intwfac

#include <isis/d.h>

isisinit(O);

P Broadcast to a list of addresses /
nrmp = BCAST(alist, msg, nwanted, anew, atype, alm, rest)

address alist, rlist;
message mrss;
dar *amsw;

/* Broadcast to everyone on a list except the Sender ./
nresp = BCAST..C(alist, m3g, nwmnted, sw, atype, rmi, rst)

address alist, "rlist;
message *msg;
char *amw;

P Reply to a broadmt or RPC request /
reply(msg, value, type, len)

message osg;
char *value;

/0 Repy, sending a cpyto other processes
reply.cc(msg, alist, value, type, len)

message "msg;
address "alist;
char *value, "fvalue;

I lush any asyndronous messages
FLUSHO

Above, BCAST is an unordered (but reliable) protocol, and is not actually used very often in ISIS.
You can substitute CECAST to obtain the causal broadmst, ABCAST for the atomic broadcast,
and GBCAST for the strongly ordered group broadcast protocol. Section 4, below, discusses the
way this dhoice would normally be made.

3. Dhmm.o
In eadk ase, the addressing information is used to determine a set of destination processe (an

ddre list) to whid the message is delivered. On reception of a messa, this information will
be present in its dejs field (see ms&-getdestso in MSG..EDIT(TK)). The protowl wits until
nwated replies are collected, or until it has as many replies as possible, and then returns the
number of replies and a vector cntaining the replies themselves. 'he address of the sender who
supplied the i'th smwer will be saved in rlist[i] if rlist is non-null, and is discarded otherwise.

If nwanwd is 0, the message will be sent asynchronously. That is, the caller can continue execut-
ing before the message is delivered, although there will be a delay even in this me while the mes-
sage is passed to the ISIS protocols process. A messag is said to be symhronous if the caller

* 8

BCASTOMK D07''MUTrIED SYTM TOOLSrr BCAar('rK

blocks waiting for one or more replies, although obviously there is a range of degrees of syn-
chrony: a caller that waits for one reply will be running much more asynda sly than one that
waits for replies from all destinations. Asynchronous exection is always much faster than syn-
chronous execution; the more syndronous, the highe the performance cost.
A reply is specified as a pointer to the data in question (t will be copied to a safe place during the
call), the type (see N AGES(K)), and the length of the data item in bytes. Replies to a unes-
sap are sent using replyo or replyec() (which sends copes of the reply to some other set of
processes). If the caller ha specified ALL for mntmed it is still possible for a recipient of the
message to refuse to reply; this is done by caling a reply with a mlfa mw pointer a 0 aen.
The reply is also permitted to be shorter than the length specified in the broadcast.

For example, the fancy twenty-questions program described in the XFER(TK) documentation uses
a reply(mp,(csar*)00,0) when one of its hot standby processes gets a request message.
The addressing rules used by the broadats ae relatively subtle. The basic idea is this:
a) ECASrO send to the proese and prom group members listed in the nuU-terminated

address list. It is assumed dat the "eutry" field of each address in the list has been set to
the entry number to which the message should be delivered (see ADDRESSING(TK)). If
this is a standard entry and hence the entry number will always be the same, the routine
se..entry(alist,value) ,m be used to aet a entry numbers in the alist to the designated value
(for convenia, setentry returns its alist argument).

C .'... b) BCAS.EXO is like BCASrO, except that if the sender is a member of the address list it
will be exduded from the actual delivery. This is useful when an asynchronous broadcast is

* to be sent to the remote managers for some distributed resource after the local copy has
already been update&

* What makes addressing complicated is that ISS makes a distinction between process groups that
are directly accessible by a proem and those that it can only ess indirectly. A group is direcy
accessible by any of its members, plus any additional processes that a group member has added to
the group view using pg..adddientO (see also PGROUS()). Aists as described above can
only be used if al the proce groups in the alist are directly accessible (other procses may be
explidtly listed too). ff a meg ias to be swt to a process grop dia Is not directy accessible, de
allt mm oly co one enty - die grvoW adbes. Thus, broadcast addressing is far more flexi-
ble in the me of directly accmsible addresses. To make matters worse, CBCAST 0 doesn't work
correctly if invoked asy"diro from a process that em only aess the destination indirectly.
Thus, in the case of indirect ass, CBCASr should only be used synchronously (waiting for
response from one or more destinations). This limitation will be eliminated in a future release of
ISS
If a broadcast is invoked with nwanted equal to 0, or if several broadcasts are done concurrently
by different tasks within a single proces, the issue a of how to esure that they have ter.
minated before taking some action that might leave an externally visible trac. Othewise, should
a failure cause one of these protocl to abort, the external state of the system might be inmn-
sistnt with the sate left by the f'lure. The FLUSHO primitive should be invoked for this pur-
pose. It blocis until all pdi broadcasts are completed and then permits the caller to resume
c-mtt n y.

4. P,*u tu rIgtU n at e brmie.
In most caes, CBCAST should be specified as the broadct primitive; tis is the dheapest proto-
col in ISIS and it is highly advantageous to use it whever possible. Bkowever, some replicated
data structures and algorithms need the stronger ordering ta ABCAS and GBCASr provide,
and there is no very simple way to explain how one identifies these applications. The basic rule is:
CBCAS is used when messages from other processes that happen to arrive at the same time as
your broadcmt will be serviced the same way regardles of whether your message arrives first or

M' %
.! s

BCASTrTK DISTREBUTED SYSTD TOOLKIT BCAST(TK)

second. For example, requests to read a replicated database or for some other simple service
would be tznsmitted using CBiST: these bave no effect at all, and databases are usually locked
to prevent reads while tley e bi updated. ABCAS a ud when reuis ill be queued or
otherwise applied to a replicated data structure that would return different results after a sequence
of updates depending on the order n which they were dome. A FIFO queue has this behavior, but
a B-tree or a file normally would not. Thus, one would normally use ABCASr when talking to a
FIFO queue and CBCASr when talking to a B-tree manager. CDCA is used to obtain a con-
sistent cut across the system, an operation that is only needed in certain highly sophisticated algo-
rithms. If you are conrned that your application may have an order semitivity, it should still
suffice for you to use ABCAST. ABCAST, however, islower than CBCAS. More discussion
of this choice appears in VSYCK).

S. RIC minhanim
ISIS does not urrntly support the sort of argument packaging that is common in M services
such as the SUN RPC servic or the CEDAR-MESA one. Eiwever, it will shortly. In the mean-
time, to do an RPC, the arguments should be packaged in a message, and then one of the broad-
casts used to transmit this message to its destineio (hat is, the s should specify a single desti-
nation). Set nwmatd to 1 and wait for the answer. It is esy to iemralize this to a group-RKC
(set awaed to ALL) or a quorum-oriented RPC (set nwnt tb the quorum size). The RPC will
return when nwanted responses are received ad any Fira responses will be discarded. Within
ISIS itself, we use a combination of these methods.

6. Whatcn yu conclude about a Ulan?
If a broadcast routine is asked to wait for a reply from some proms, but it returns without that

* reply, the procm has failed or simply doesn't emist. You cm actually wdude a bit more about
the system state than this, however, and understanding what you ca assume will simplify your
code.
Fst, it is safe to assume that you won't see any more action or messMes iitiated by the failed
proem. For example, if it was supposed to send a reply (or a reply _c), ether the reply gets
through first, to all destinatio in the reply-cec ae, or the reply just won't arrive anywhere, ever.
Mhs is also true when the prom might have been using a toolkit routine at the time it cubed.

For example, if a process may have failed while pg..Mdmembo was running, either the new
member will have been added before the filure is detected, or the failure will be detected first in
which cme the i mbo will not take place - this s because the adldmembo a ithm in
ISIS is based on GBCASr, and either the GBCASr is delivered before the fail=e is nnounced,
or not at all.
Thus, if you didn't get some message and the process that is supposed to send it is observed to
fail, you won't get it - and will did any one else who would have received a copy. This is a pro-

-~~ perty called broadcast atomkcly.
Also, the failed protema will vaniuh from any proem group views in which it was listed, and if the
broadmst used one of these groups as a destiation, the failed process drops out before the broad-
cmt returns to its caller. The proem may not, hver, have ben dropped from other groups to
which the message was mo set. Ths is beca there could be a delay between when view one
gets danged and when mother does.
For example, assume that prom 'p' is a member of groups g1 and S2. Some other process, 'q'
broadent to gi and waits for replies from ll its destinations. If 'p' fals, protes 'q' will defn-
itely find that 'p' has dropped from group S1. On the other hand, 'p' may still be listed as a
member of group S2, whid was not a destination of the broadcst.

3 nwVCTK DIS'RI3UrrD SYSTEMt TOOLKIT BnTvFccTK

1. Syuegidb
Some simple routines for manipulating vectors of bits.

2. Iuterfaw
#indude "d.h"

defln MAXHITS 32 / Multiple of 32

* bis(vec, b)
bitvec vec,
int b;

bicvec, b)
bitvac veq-
int b;

bit(vec, b)
bitvec vec;
int b;

bisv(vecl, vea)
bitvec veci, vec2;
int b;

bicv(vecl, ved~)
bitvec vecl, vec2;

bmndv(vecl, ved)
bitvec veci, vec2;

bitv(vocl, ved)
bitvec vecl, ved;

bdr(vec)
bitvec vwc

buet(vee)
bitvac: vec,

3. Dcomi
These routines support vectors of bits of arbitrary leq nghmd wre used by MSS to impement the
svjafled and tv-recoveued parts of a site-view. They impleat 32.bit vectors a long integers
an longer vectors a damracter wrrays. They anbe used for otw purposes, but you may be
forced to use the sae value for MAXHITS a the remaide of the system if you ilude d.h in
the file that employs the bitvectons. The routines wil set/dr/test a single bit, setldear/anditest bit
by bit between two vectors, dewr an entire vector (am bits to 0), or sft w ntir vector (set its bits
to 1).

COM1ILECFK DIST3DUTED SYSTEM TOO)LIIT COMPIL(TK

1. SYROP6
]Hbw to comile a hsis cie program.

L. Syms
In -a isWdient/Iibl.a 11
In -s isisdintft.a 12
In -s iskgsedIt~mb.a 13
cc -c -Jisisdient dient-rog.c
cc -o dientprog dienLpo.o I?

3. Wnift
ISIS uses a number of global variables, and it is obviousl a bad idea to re-use the some variable
names for some other purpose. We try to use lames &...dL. or p....to avoid Rilely conflicts,
and to dedare our variables to be static whenever possible, but som ewe is wetanly required.
Many of these global variables wre declared in d.h. Eveuafy, we plan to dean tis up and will
als provide a list of glWa variables an what they are used for below.
Sbortly, the library ailed ndiba wil be merged with hib2.a. The use of two libraries is aua
voidable consequefce ot the way RANIB works. The Amrs (liblas) cotains toolkit routines, an
the second wontsi thdo ns of the dent->ss interface cods.

3.1. Tompa y SUN wersi
We have some idea on how to reorgaze the system, but for now the various libraries, coe in
two versions. lbs one shown above is for the gould. Ona the SUNI, everything is the same oept
for f th im directory, which is renamed "kient", and the mesage edit library, which is renamed
sun...mlb.a. This situation will go away very soon.

COMfGMf~ M mF3Wm SYF1UI ITOLUf COfGIrK

1. Syasis

A toolkit roubmn for mmmaMn MenfIuation information

Einclude <iasfd.h>

cofg-.updat4gid, 1, dual, typel, lual, nunw2, .. 0);
address Sid;
cher *namel, *data;
int typel, lel;

dia Scnfigjue nun.
addres gd;

3. Dimi
&=m applicaticua will need to ivide up tabk uing q~iinom .p d n ule thamp dyamo.i
colly. The configuratimi tool unk.. tb6 eay, rMI a ny tha t com~guration update be
done by members of the groW to whli the aunfgutionapplpies, no uW P9 "dmi u" ule i

* ~should be rqemed usin = or mor data stuurens; mulid* strucures would be used mn
-om cm hecoia of t nod to specdy "type informam oo t &igte wisdusim mapplie by

the =msaedaiting routines (see MEMsA(Gsr). To update the omguratiom struoure, ue
cuzftg.update. Whena msage arive, all recipients should esi coi-leat to query the smucture
and all will see the sun. vshs in it for any pvua messae. You shmld coy these value to the
side if you plan to look at them after doing somneding that om blo& (an RKC or broak, a
Lwgto, etc); these values angew while a tak is WIeep -Bmgurudo1 we mdntined on a
par-group bai the sine &Me may hav different values, andean for two diffaesit groups
eve if the some propin belongs to both groups.
It is cotl to update conflguratim, espedally if the smm mfigurutiom bs updateid comwmetly by
multiplegrup members. leramw, stub behavior nos be avoided whmver possible.

* 13

COORDCTK DIRIUED SYSTEM TOOLIT ODC

1. Synopsi
A routine implemenftin cordinator-cobort comptations.

2Interfim
#include <isisd.b>

/0 BRn a coriao-cohort computation *
coordcobort(msg, gid, alist, action, rtype, rimn, gotjpy)

message *mS;
address Sid, *list;
char (Oaction)O;
int (gSoLepl)O;

/* Fgur out who the coordaor should be 0/
address coorhatok(d, sed AF s

address Sid,sed, s

3. Dhisol
Many OSS algorithm we bod an the idea of having one proes (the cordnator) take some
acton whie others (its cohorts) monitor it and take over tn the event of faiure. Although this
ca be implemented several ways, we picked a simple sdiens and provided it in the coordinator-
cohort toolkit fadlity. Sinc the =)Sion of picking a coordinator for a task is somewhat more gen-
eral than the notion of running a coortinaor-cohort comtputation. th routine we use to pick the

coord is also documented here.
A coriao-ootinteraction starts when a dient issues a request to some group of Pro==se

usn a broadcast. The dimn typically blocks waig for a singe reply, which may com from any
afth destination processes. The recipients of this message all invoke coord..cohort with the fol-
lowing arguments: the message, the address of a rotine that will take th disired action, the
processes at whidi the compation Is runnig, and the length and type of the result (see
MESSAGESCTK and Mso..EDrX)). Tie list of processes shimd be in the same order at
every process that invokes the coord-cohort routm; this is faatatd by~ the ladt that the message
destinatiomn (see mnsgjetdosuo), the memnbers of a process group (pg.getview~gd).>pgalist)
and the sites in a sitHlat (_sfjtviewO.->dsist) have the same values in all of these processes
whe the message arrives. See VSYNCCTK if thi conpt confuses you. Basically, the idea as
that messages in IS5 sean to arrive siutnosyat all daestnton processes.
The coordinator site will be t sit whor the message was sen if ame of the processes in the alist
resides at that site, urnd ruxkunl chosen otherwise. The other processes wre cohorts, and are
ranked using a fairly random ardu based an siteid numbers. The processes in the ailut must
all bem memesof the grou designated by gid.
At the coordinator, the action roune-m is invoked as acaiam(msg,gmdjhow), where pd is the group id
from the woordo-cohort request and how will be the constiant CCL.COORD, d'nin4 in <isisd.h>.
The coordinator rouine should moaute the request and copute, a result, storing it in anarea of
memory allocated with maeloc~ It should then return a (char 0) pointer to this area This result
will be snt to the caller using a replyo mecanism but will als be tranmitted to the cohorts,
where the got-eply routine is invoke as: gotiqply(msg, result, rien). The type field is used in
generating the reply message, but is not passed as an argument to the goLreply rouitine. The msg

."10"~

------ ---

COORDC=K DZYTRIUTED SYTEIIS TOOL~iT COORD(TK)

argument is the one to the original coordc.wort cal. The memory that the result occupied is
automatically freed when no longer needed.

In the event of a coordinator failure, one of the cohorts will take over and restart the action. The
restart invocation is identical to the initial action invocation ezcept that how will now be equal to
CCCOHORT. No dean-up actioms will have been take; the cohort a respomible for this if any
ae needed. If all of the processes in the alist fail, the caller receives a falure indication from the
orinal BCASTO that triggered the exeution of the ,goitim - specfically, the BCASTO
returm 0 (no replies) imted of I (the ingle reply the caller wanted).
The routine o r, alist) picks a coordinator and reunms its address. It return
NULLADDRESS if every process in the at is down The coordinator will be an operational
member of art in the current view of gid'subject to the following rule:
1. If some process in the alist is at the sue site n the sene, the coordinator will be picked

relative to this process.

2. Otherwise, the coordinator is picked relative to proces adst~kj wher k - sendersifte nod
length(alist).

3. Now, given a starting point, enries in alist are evaluated one by one, md the first one that
is listed in the current view for id is returned. NI ADDRb.S is returned if all processes
in alist are tested a none is operational.

'15

EfS DEMflDUTED SYSUN TOOLM~r ETWn

1. SYM9Pds
Declarig the routine that will service requests to a uiven entry paint.

2Intwhw
#indude 'd.h"

isis-entry(wide, rutine, rnme)
int cde;
int (routi)O;
diar *rm;

3. Dbenim
When starting up, a propi should bind routines to the entry codes that it will swpt in mes-
sages it receives. The toollkit routines do this for the gineric addresses when isusjnito is invoked.
Onc defined, it is ilegal to redi the generi entry point, although waer entry points am be
rebound a desired. Mua is to prevent wsers frmn uz - dtonally scewing up the toolkit routines.
Entry points wre bound by willing zus-.entry and specifying the nmeric code, the routin address,
and a printable nam coresponipg to this routine. The generiP entry coda awe defined in
generiq.address.h; these wre standard for all JUS clients. Otei entry coda a be defined on a
per-dlient basis starting with the nur USERLBASF Codes need not be allocated sequenially
and different applications c wue the same entry code for totally different purposes.

4. nfesprag a =BM
It is possible to intercept ad examine massages before they reuch the entry handing routine. See
FJLTER(TK) for details.

~*- - ~ ~ ~ ~*~ : .*' *.-~- ~ %\~'~ N . ~ ~16

FYWM DWRE3UTED SYSEM 1TOUUT nS

1. Synopsis
Description of files used when starting ISS up at a site and the progia used to start the system
UP.

2. 1% saumary
sites: lists the sites that are running this time
restart: Tells what program to restart automnatically

3. Strog le p ata de
To run iss at a set of sites, first creat a "sites" file in the following format: a '+' or a Y- (lines
with a minus are ignored), site-number (must start with 1), a olon, three numbers indicating the
internet ports for the idis sites to talk to each other, to use when restarting, and to talk to dients,
the site name, and if multiple is.s systems are run on one site, a TI followed by a number. The
portmnmmbersanall be 0i heetcservces fle isset up tosupport issforyour systemn. The
third of these numbers is theam isis-jbto expects to be passed. For amsnple, a typical sites file
mih ontain:

" 1:1250,1251,1252 bullwinkle.ca.onnel.edha
" 2:1250,1251,1252 kenmc.carnell.edu

This fie say that isis will be run with two sites operational, bullwinkle and kow-a The port
numbers used are the same in this cue, becaus buflwinkle an kuna are two different achdines.
To run two intanmes of idis on bullwinkle use a sites file like this one:

" 1:1250,1251,1252 bullwinkle.ca~cornell.edu/1
" 2:1253,1254,1255 balwinkle.c.wrnell.edL,2

Here, the port numbers had to be different because all the ports are to be used at one site.
The restart file tells what progrm to restart when isis comes up at a site. These are mostly sys-
tem services, like the remote exec service. Here is a typical restart fie:

/fs/moose/bdwassrotos/protos <isis-protos> -p
/fsftooseAh'sisdienthrme <isis-rexec>
/fshmoosefl~sisdientrmgr <ius-rmgr>

Ibis tells the system to run the protools process (prowos), the rexe program (rexec), and the
recovery manager. The Xrgi- "-W' to the protos process g is required when isis is run this way.
Etra arguments may be supple by fth isis startup program: in the cue of the protos program,
.Sname if the sites file name is not the standard one, -I# if the site ha a sub-number, and in the
me of the other program, a port number if the sates fie specifies something for the dient-isis
connection port. For euple, using the second sates file and the abov restartfile, the protocols
program for bullwinkle/2 will be invoked a

<isis-protos> .11,

and the rmgr for ballwhnkW2 will be invoked a
<isis-rmg> 1255

The latte onusmand is telling the rmpr program to call isbIsnit(1255) to ceetto isis-protcs.
To run Wss at a site, type

isis [-S.ne] [-Rneme] +&

If the sites file name is M given, "sites" is assumed. If the restartflle nm is not given, "restart-
Sie' is assumyed. The "+" argument tells isis to bypass the itefailure destector, which is no yet
fully desbugged; in this cae, all sites must be brought up mare or less at the same time (so, if

uigbullwinkle and kama, you wuld have to run isis on both machines at the same time, by

FILES&T DISTREBUrWD SYSTFEM TOOLIKIT FILEA=K

band!). This command will bring up as many instances as are needed for the local host, so using
the second site file it will automatically start isis up twice. A SUNM2 begi to perform poorly
when it must support more than 2 isis sites at a time, the gould somewhat more (4 to 6 max-
imum).

A typical program, say 20-questions, would be run as
twet dient-port

giving the dient port-number to use to wmvct to ius, or just

twenty

if the /etriservices file is set up orrecty to knOw about ius. Note: It *o*s about 30 seconds to res-
w.r &ia at a ste. f a program tries to connct to urns before rear s finished various errors cn
result.
To kill isis at a site, do a

and kill the protos process(es) that are listed. f the system rashes, the remn it cashed is usu.
ally given in the file is.log (1o0go 2.og, etc if several rum on one system). After killing isis, a
UNIX bug co cau the tpos it was using to linger for 30-seconds to a minute. U you wait long
enough before restarting the system, these will normally go away. U they don't there is nothng
to be donee pt to dane the ports is is using or to reboot the mdfnz. (Ibis is obviously a
UNDX bug.)

4. RAt anqmm

The figure below outlines the stages of restarting isis at a site. As see in the figure, 'isis" starts
by scanning the sites file and then trying to contact isis processes elsewhre in the network. I it
finds any, the system restarts by jonn them. Otherwise, it assumes the restart is from a total
falure. Next, all the standard system programs are run, and then the recovery manager restarts
user progrs (se RMGR(TIC)).

18
:N'

!J

Recovers, site = 3

zmmmaEEES Broadcast: Is ISIS out there?

No
Y es

< total restart> u Run recovery protocol

Site 3 , incarnation 7 Site is now up

For (each process group)

-<ye total failure action
Last to fail? <4Scan recovery database

I I no partial failure action

Monitor ISIS at this site

ISIS failed

Signal clients: ISIS has crashed

The ISIS Recovery and Monitoring Sequence

* % % * .

FILTER(TK DISTREBBUTED SYSTEM~ TOOLKIT FILTER(TK)

1. SyDOPiW
A medianism. for intercepting arriving messages, used internally by the system.

2. Jatewhca
#include <isis/d.h>

typedef int ifunc(),
ifunc Iims-setfllterij, old-jlter;

old..fllter - isis-setfllter~routine);

(voicodssis..sher(oldfilter);

3. Diecnio
MSS ha several tools that "filter" the stream of messages arriving at a process. For example, the
state truufer tool spools messages of several types duzring ftaers, the withetication tool vali-
dates the legality of arriving reqests, etc. A filter works by inteposing itself between the arriv-
ing meage quetie and the net "lowest" level filter, down to djocaLdelivery, whida is, the
lowest level of all. A filter is calle a a message arrives, and can iinpect it:

routine(mp)
message *.ap

Actions available to a filter are to reject the message (usually by mendin some sort of reply,
perhaps a reply(mp,O,O,O), or to pas it to the next level by calling oldfilter(mp). A filter may
fork off anew task orissueausignal, but must not try towat ordo an RPCorbroadcast. This is
because a filter does not rim a a normal tak

4. Eumk
Mwe stateotramfer utility spools some messages by setting itself up as a filter. Its filter routine
looks like this:

dferfllter(mp)
register messag mp;

if(<let up tough>)
old...flter(nip);

if(xfer-.queue 0 -(quueOV)
xfer-.qumu = qu..illo;

qu..ad&mp~fer.queue, 0, up, nullroutii3);

When a transfer finishes, messages are despooled by restoring the old filter and then replaying the
messages into it:

zfer-despoolo

FELTERC1X)D T33Ur SYSTEM TOOLIT aHt=RfC

register queue, qh, Oqp;
ifunc filter;

filter - old..flter;
qh - xfer..queue;
xfer-.queue = (quew*)O;
while(qp - quhewi(q))

filter(qp.>qu..mp);
qujreeqp);

qujree(qh);

Notice, how the replay mecanism "steps to the side" by using a copy of the queme pointer and
meating the old value to null, an also by reting the isis filter befiwe despooling any messages.
This is necessary to ensure that a reinvocation of the state trnder tool (or some other entry point
thae changes t filter) can set up the, filter again and create a new tiander spoo. If this idea (a

ratatprocedure) is wifuniliar to you, it is probably not a goo idea to try and use mnessag
fiters in your application: the sorts of bugs that you may rn into awe pretty bizarre!

INrr(rK) DMS2RmUIED SYSTM TOOLKIr INrr(TK)

1. Synops
Isis initialization routine.

2. In-owl e

#inlude "d.h"

issinit(port-number);

3. Dhiecioo

Ths routine connects the caller program to ISIS and initializes both the data structures used by the
task and toolkit facilities and various constants, such as myj.,rocessjd. my-address, my.site.no,
my-.siteincurn, and the site..nmesj table (site.names[i] is a printable name for site i). The
port-number may be given as 0, in which case the value in the system-fle /etc/services is used, or
m a non-zero number in which cm the specfied port is assumed to be the one to connect to ISIS
on. See ADDRESSING(TK) for a discussion of the sites file which wntains the port number
specifcation. STARTUPK gives some eamples of programs that call isisnit, and FLE(K
talks about where these port numbers cme from.

System services like REXEC, RMGR, etc. should set the variable my..processjd to their "name"
before calling issinit.
The task routines may crash if called before istsinitO is called.

2

,

o2
4I 5 ~* .~"a*~.a ' ~*. -

LOGSCTK DISTRIBUTED SYTEIIS TOOLKIT LOGS(TK

1. Symopb
How to nmg replicazed data structures that cam be recovered after total failures (all process
group members die).

2. Dbcusdus
One problem confronted by the L91S programmer relates to the recovery of a replicated data struc-
ture afte a failur. In a situation where someone survived the failur, this is easy: the state
transfer tool can be used, with the recovery manager giving advice on when to do the transfer.
But, what if everyone crashes? The recovery manager will wait until all the relevant sites coe
back up, then restart tdo failed processes, but exactly how snhould the missing data structre be
rebuilt?
In many system, the solution to has been to resort to transactional files, on disk. You can do this
in IMS too (see TRANSAC'IOWMSTK). Trmnationlly updated file survive failures, and ane
updated atomically, hneanything damaged by a cash will automatically be restored. In ISIS,
however, the entire idea is to move mwy from nested transctions and towards les costly, less
intrusive mneanis.
A simple way to deal with recovery, and the one we recommend, is a follows: Replicated data is
maintained in core, in a volatile form, using tools like the replicated update tool to query and
update it. When an update canges the structur in a significant way, however - a way that needs
to be preserved after failur - the update routine; ihouild "log" the chapg in a well-known Sie in
a wellknown plac. For example, you could create a Mie called "A/urspoolllop/my-.prog.log".
Use a simple Edle format (udci is nice) and keep appending to it and doing a flush (fsync(2)) after
each write. On recovery, you will need to irerea the file and rebuild the data structure one
change at a time.

V One thing to be aware of is that when several processes die at onc, they could leave their logs in
slightly different state. Snethe recovery manager arranges for all the last processes to fail to
recover at the same time, your recovery mehanism should avoid a situation where these processes
recver independ-- tly from lop that could have different lengths or contain non-indntical inf or-
mation. Some ways to do this are: have a coordnator recover from one of the lop and then use a
state transfer to copy this information to other processes, or maintain th lop in a cinonical
order and reach agreement on what the last record is, or maintain idetical lop and reach agree-
ment on what the length is. To reach agreement, use a group RPC that queries the other
processes with copies of the log and take the mimum length that is returned =s the anwer.
Franldy unless your applicaton uses AECAST wheever an update to the in-or storage occurs,
which mas it trivial to keep the lop in a cannonical order, we recommend that you go with the
coordinator-cohort solution. It Just isn't worth going to so mucha trouble to deal with a situation
that almost never happes anyway. Even this solution won't be trivial, because you have to cover
two am: one where the coordinator succeeds in loading its log and other processes just do st
transfers to joina, and oewhere the coordinator dies while loadin the log or during a state
tranfer, forcing a P Ahort to restart from its own version of the log. A tool that does this will be
provided a part of the recovery manager later this stummer, an an example that uses it will be
included in the next edition ot this doozmAnentation. The code un't neely acomplex as it prob-
ably sons
If your lop are lkl to get very long, a periodic depntmight be a goo ides. You an

% create one by supporting a "16apoimft" log record, whic would always aperat t beginining
of a log. To make a new dheckpoint, first writ it into a temporary fie, then rename the file in
one shot so as to atomically switch from the old log to the new one. (See rename(2) in the 4.2bsd
UNIXmua).

23

.Ik

MESSAGES(TK DL5TRIBUFED SYSTM S~ TOOLKIT MESSAGESCTK

1. Synaqzo
An overview of mnessages, as they are used in ISIS.

2. Izskide iM
#include <isisd.b>

3. Db~a.
In ISIS, acummuniwtion is via messages. Basically, a message is a container for some amount of
data, organized as a vectr of "fields", and possessing certain standard attributes. Specificlly,
each message has a sender, which is the addess of the process that sent it (se
ADDRESSING(TK)), a list of didnations, which is a mill-terminated address list, and a set of
fields wontaninS data. The message editing system (see, MG-MITCM) provides a variety of
routines to create and mauipulate messages. Here, we confine ourselves to a summnary that
focuses on concepts rather than detai.
The type of a message is "message", and is predefined in d.b. The data structure used is quite
omplex. An empty iessage is ereated by the routine msg..newmsgO, which returns a pointer to

the message but doesn't fill out any of its fields. The sender ferld of a message is automatically
set by the system in most ontes, so applictions cnasstume tdot this information is "seoure". The
routine misg..getsender(msig) returns a pointer to ft field or ((adikess) 0) if it is undefined.
Sumilarly, the routine msg...stdests(msg,alist) sets the destination list of a message and
msg..getdests(msg) returnsi a pointer to it. Thesw can often be left undefined, for example if the
message is to be broadcnt: in such situations, the alist is conmputed by the WSS 1mmuication
subsystem and filled in automatically. (if the sedrfield is no filled in, the message subsystem
uses the address of the process, that called msLnewmsgO by default). The routine
msg~getdests(mp,len), however, is quite useful: it returns a list of the destinations to whidh copies
of a message were to be delivered. For example, this would be a good value to provide to coord-
cohorto as an allst. If you use the destiation list for any other purpose, be aware that your pro-
cess group view should be checked to confirm that these members are still operational, see
p.Sgtviewo in PGROUPTK) for details.
A message has no upper size limit, but MSIS ted to get sick whe messages exceed a few
hundred-thousand bytes in length. Some parts of the system break messages into 4k chunks for
transmission, so4k bagood upper linit. Sine messages hmv overhead, thuser-space aailable
in a 4k message is only about 3.9k b"tes.

Mlessage fieldi are used to store data in a message. A fieldt ha a name, represented by an integer
in the range 1-127, a type, a value, and a length. Miee are currently three types of fields,
although more may be supported ini the future:
1. Character fields are sequences of bytes having the desigate length. These are not iter-

preted by the message subsytem. Users who employ a stub genrator sudh as the LMI
XDR inedsanismn should think of the XDR output as a character field even if it represents

N multiple argumnents or data item. The type of a character field is IY ECHARS.
2. Long integers have diffurent byte orders on different madsinm. Within =SS many data

structures consist of vectors of lons integers. A field containing long-integer will automati-
* cally be byte swapped on arrival at a remote iain if nbcessary, but the message editing

system must be told that the field is not just a field full of characters. To do this, the type
field shouil be specified as FT Y ULWGINM The lengt of the field should be given in
bytes. Thie messag editing subsystem knows about byte orders atcunatcally and will swap
bytes as needed.

3. Other messages. T7he idea is that a message can be stuffed into anote message, which is
convenient when multiple messages need to be piggybacked to a single destination, or when
extra fields need to be added to a message without ris of banging into fields already in the

MESSAGESCTK DMMRJUTED SYSTEMS TOOLKITr MESSAGESCTK

message. The type of a message field is automatically set to FlYFEJ4.&W
4. Note: MSIS arrevntly wses an s format that is mtarna indepedent. Lest this change,

a field type F1TYPE..ADDRS is supported.
5. The following addition field types are support: FIYPE..SHORINT, FrypE..sU)s (site.

id's), F1 YPK.GVIEW (process group view).
The routines used to manipulate message fields we a follows:
mg-ddfield(rop,ftame ptr,ftype,len)

Adds a field named flue. to the message having a value opied from the place the pointer
points to and length given by len. Ih field name need not be unique. The type is as
described above.

msg..getfield(inp,fnamejnst,Ieat)
The Message is searched for the imt'th instance of the designated field name (the first
instanc is nuimber 1). If found, a painter to the value is returnsud ad if lenptr is non-rzwo,
the intege variable it points to is set to the length in bytes (or elemnmts) of the charncter
field (or long integer Wild.

mg.deletefield(mop,funeinst)
Deletes, the i'th ismt~ of the named field.

msg..addsg(rp,ftime ptr)
If ptr is a pointer to a message, creates a field with the given nam containing this mnessae

when a message is expectedtohvseeafil ntnewihas&fldam.Aoueuls
a procedure called msg..ereateO) that creates a message and initalie a number of fields at the
some time; it takes a list of field names, value., and lengths terminated by a field name of 0. See
the NMSG..E1TTK do ientation for details.

4. ield manes
Some field names we standard in MSS These have 128-255 and we defmd n msg.h, they can be
fetchied using msg..etfield but Mo set. Field numbers 1-127 we avaWlbl for general use, and dif-
ferent applications will tend to use the same numbers for different purposes. Number 0 is not
used. It is geneally a good idea not to raise field numbers within any single application; this
avoids confusion.

S. Smndba a mesag
A number of routines facilitate t traismission of messages. The amo mmonly used routines
we the ECASTO rouitines; sme BCAST(TK. In IMS clients, the procedure isis-.send(dest,msg)

N can be used to transmit a message to a destination given by the address dest. This routine is used
heavily within the system. A second routine, isisjrpc(dest,msg), sends the message, waits for a
reply, and then returns the repl messag to the alle. 7b& itseulf will be in the field
FLD..ANSW. If the asw was giv= n aa null pointer, this field will no be defined. If no reply
will arrive because of a failure, isisjrpc returns a null pointer. Broacats, we sent using may of a
variety of procedures doaamented in BCASTS(TK.

6. Dinhq a -mgg inu*Sk cop at a =m3
Eac message ha a referec count which can be iinunented by the procedure
msgjrefouno. The refeream count is initially 0 and need only be iznaented when the me.
sage is placed on a queue or otherwise passed to some task ote than the original aveator. Later,
the message reference cout is decremented by caling msg-deleteo. If the count was 0,

MLSSAGW DIST ED SYS7WM TOOLKFr MESAG(

msg.deleteO will free the mesage for reuse. While a mesage has a non-zero referen ount, itis illegal to add or delete filIds: such a message is said to be immutable, and optimizatiom taking
advantage of this property have been included into the msg.addmsg(and msg-pazsg(utiliies.

7. Byte mppbg s d addram
The address format used in ISIS as been designed so that even in future verioms of the system,
there will be no need to byte-swap addresses when they are pased from prows to proces aoss
machine boundaries.

. Forw a mmdig
Some systems allow a proe to forward a message tramparently: to the end recipent it looks as
if this Me a e directly from the recipient. ISIS doesn't allow you to do this, although it
would be eay enough to support if desired. The problkm is that such a mechanism appear to
break our security model. To forward a mesage using the current system, you would need to
pack it into some other mesage using msg..addmsgo mad thn convinc the destnaton to unpack
the message ad deiver it locally, by caling Jl..-o..delivegyo on it.

.2

4:..

..

, 26

bSGEWFrlM DMIXIBUTD SYS7ia TOOLJET hOGJEMTl

I.Mq edift gmu mi tIh* g -
P0 msg-addfield Add a new field to a given messag. Oly nen-aegative 0/

field ame are awopted Return a pointer to the 0/
I. ~field1

diar
msgaddfield (mg. fiWd data, type, len)

hat field, type, lea;
damw data,

/0 mag~addmsg :Inert a msg2 into msgi m a &Wld .
10 C~Orly ixua-i me field ames we ainpted.1

Return pointer to field 0

CIM 0

msged m=S, me, W
mnt field;

P mmg...py: Make a OWp at the g~iven iNsWVe'

msg-py (wag
mmag *mg;

P0 mig..delet: I the relemm cout of the Si messag is zero,
1. reethempmemallocated to It. Ee, demuat 0/
10the refer.. i -n. Called by the rotineh that /
10 allocated the inaag end by my rouli that caled/

* 10 mugj~e no the q. Si

void
Si. mug...delete (nnug

mmg ma;

void
nmW-deleterield (ma;, Wfiemt)

int fiemt;

P0 msg..gezin: Cmenerate a message oontalzmag the flelda pined a .
10wgwmnaw, wichamw of the form fiekL&.ne, S/

10 poiter..to-.data fieldJength, .. followed by 0 0/

MISG...EDfr(TK DISTRIDUTED SYSTEI6 TOLKI TaG.EDMrFK

insgensg (fieldi, datal, typel, leni, field2, data2, type2, len2, o.,)
int fiekdx, typex, lenx;
dir *datax;

1* msg~jetdests: Return a pointer to a null-terminated list of the .
/0 destinations of a given message (null pointer, if none) .

I. If a non-zero argument is given for n..dests, the number1
I. destinations is returned

msgctdests (msg, r~dests)
message Owsg;
mnt IA-dests;

/0msggetfiekk Return apointer to the data in agivenistneof a
/I' field and the length of the field if the last argument 0/

is non-zero.

char
msg-jetfield (msg, field, inst, len)
messae .s
mt field, iest;

in *en;

1* msg.etfields: Return an array of pointers to the dat of up to the first *
/0 ~n instncs of a given field, and their lengths (if the *

/I6 argument is non-zero). Return value: number of iie~cb
/0 actually found.1

msg..etfields (msg. field, pointers, lengths, n)
Messag .Mg
tnt field, lngt], n;
char Opontersfl,

1* msg..gtiovec : Return a pointer to an array of iovec stuctures for/

/4' mngetovien: Return the length of the lovec array.
/* anm ghould realge rie2~rad() be maaros). 0

msL~etiovle (mg)
message Omsg;

/0 msg..geden Return the length of the ittaw' part of a given message1

P6G3Dflfl1 DMrmn sy @w TOOUUTr MGEr~r(

m&4tlc (msg)
Meuvae Mug;

Ps msg..geUMsg Create a masage from the couteaft of a gOven instance 0/
sof a field.(It i azed the the field hu a piqer /

Ins mssg hm.)S

rn-Sgebii (mg, f ie mjs)
m-es oug;
intfildit;

P s nggevmsp :Return a veto d nseus create from up to the first
/0 n btmof a vfe W nm rtumtheutual 0/

Is r~mnib of inh mnages. (it is uauned tditmd 1a
Is ~field im a papea header.)

mng..e=W (mug, fi ewSges, n)
mesag .meg. (Omsuag)O;

Is mig geuvplyto, Retur the address to and the ny for a gven insage)
/0I Cmaz t~ m y nm be the snml 0/

addreuss
lnw lyt (MWg
messae *MS

Is/ ugeue0 : Return the addre of the mi for a Siven mesg
I0sCwtim the may noit be the place to maid replies!

akfren 0
masgeuel (mug)
rn-age *MS

Ps rmgncefcount Jnst the reference coum ot a Oven n Sae
/0sCmtt. A message with multiple refs .be dumaged ~

m u-crfot (mag)

Is umugjcwmg: Cremte Mnw messag with ~field Malld in 0

-g--W- 0

Mm~cwmsg

G_EW rr(DISTIUED SYSTEM TOOLKIT MG..Fr(TOK

/0 mssread: Read and return a message from a file desciptor "/
/0 Second argumant gives length if known, 0 otherwis 0/

message
msgread (sd, len)
int Ad;
int len;

/0 msg_mr trw: reconstrw the argument into a mesage and return a ptr

message"
ms tnu (ptr)
djw *ptr;

/" niss re astri pla:: re Uua the in phwe and rem a ptr to its 0e "/
/0 Caution: assumes the ptr points to a malloc region; will be Reed
/0 automatically later by the message editn system

message

char ptr;

/ msgsetcdest : Set the destination field to the given destination

void
msgjetdest (mal, dat)
message "mss;
address dest;

/0 msgi.setdests : Set the destination field to the giv null-terminated "I
/0 list of destinatiom 0/

void
msg.tdests (msI, daa)
message "msg;
address destsa;

/ msgjtreplyto: Set the reply.to field to the iven addrm /
/0 Note: Usen rs et the s ader mdres - this is m mnatic

void
msgjevrgyto (mo,wo))

p message "msg;
address who;

/0 msg..wnte: Write the given message an the give file des"iptr/

' msgwrite (4, mag)
iat d;
message *msa;

MGWrCM DISI33UrED SYSEM TOOLUT NGEC

1. Synosis
The Nawn Service allows an iuis dient to post messages, whi will uatomally be forwaded to
other processes that are siabacrnbm of the news service.

2. Listerbes
#indudle <isis/d.h>

newspost(slist, subject, tnp, back)

news-posta(slist, subject. inp, beckc)
site..d lista;
char subject;
mmwa~ *mp;
int back;

A newsdcea(slist, subject)

new~deaf-l(slist, subject)
sitejd AUGti;
cha esubject;

nback - newtyiuhaaibe(subject, entry, back);
int nback;
Char Osubject;
int entry, back;

char Osubject;

3. Db .o
To post a message, a procesu ails news..poa. SUnr is a Nos of sites to wich the message will be
forwarded; if a null pointer is Oiven instead, the message will be forwarded to all operational sites.
Subjec zs an arbitrary string of up to SLULEN dmercters. For every subject the news service at
ach sate keep a list of recently poste messge which new subscibers may look at. When a
messag is posed, the paratem back determines how long the message will be held n a "backt
issue". If back - 0, the umeae wil be forwarded only to current subscibers and will be deleted

inimecataterwardb. If badk is greater than zeo, for exmte becit - 5, the message will be
held until five new mesages have bean posted to the %me subject.
News-.post uses CBCAST to broadcat the message to the new services at other site&. If it is
WmWotant that all subAibm reeav news messages in the se order, then mwws-posm should be
ailed, wich will use an ABCAST to post the message.

bmses kept ma be&k sum on a wtsin subject may be deleted aplidtl by alin aws.clzw
(d tsall messages posted by do ailr), or .vws.cLku..pL (delemes all massages posted by mny-

body).
A proces that wishes to subsabe to a news sub;=cabl nuwjubwdbe, specifying an entry point
(declared by iss..entryO, wee E'4TTIES(T) to which the news service will send messages posted
to that subject. The pamnew back spedfes bow many bs* issue the subscriber wants to

reieNews-subseibe retiun the actual number of badk isue avalable, that will be sewt to the

NEWS(TK)DISTMr=UE SYSTEM TOOLKI NEWS=TK

When a message is postd, the news service automatIasilY afte the two fields FLD..SUB and
FLD.ACK ontaining the'subject'ad 'bade pmteW from the news4,osto aUi. A subsariber
may inspect these fields imply by asfling msgjefiejdo.
News-.cancel cances a suibscription for a given subject.

4. Dosedes
All routines return a nonzer value in the cae of an erro, ezropt for newgs.fbcribe, which i-~h
aten an awor by returning a negative value. Note that newst..jost and news-.posta do not wait for

replies, when brosdcusting a message. Therefore a succsf return does not yet guarantee that
the message hbm been delivered to remote sites.

S. Bass
A sate wish wipe out all badk mmue held by the local new smervice. The new service does not
sae messages on stable. storage, nor does it attempt to get back ies, froim some other site after
a recovery.
Tha version of the news service does not provide any form of semirity. Any Isis dientcan post
and receve messages on msy subject; it can delete my back issue it wants to (news..dear...ll).
News uses a lizuw search to find subjects in its tables. Hashing should be used instead.
If the W ervwice turns u to be heaiy wsed, it might make sense to move it into the protocols
procM.

p3

PGROUP(TK DEI BUTrED SYSTEMS~ TOOL~rr PGROUFMQK

1. Symo
* pacage of routnes implacenting process group and group addressing.

#indude <isisd.b>

isisjnit(O);
pg.jnito;

address egcate(nwmejnmsr)
dcr *namne;
inti *n

address pJu n)
diw *name;

pg-admemb(gid, who)
address gid, who;

pgJwnv~gd)
address Sid;

pgmp~g newpnuue)
address Sid, newpme,

pg..delete(S4d
address Sid;

pg..addcdient(Sid, dient)
address sid, dient;

9 ~pg~deldient(SKd dimi)

address Sid, n;

adjdresp~ewtiewd i
address Sid;

address Sid;

ppg r(gd, un a
address Sid;

int (routine)O;
dim arg;

* ~p.,otor...el(gid, routine, org)

% . N'~

PGROUP(TK) DILSTREBUFE SYSTEM TOOLKIT PGROUPtrK)

address gid;
mt (*routine)0;
char *arg;

pgjin(gid, mp)
addres gid;
message "mp;

pOn.yverifier(rOine)
it(roufin)Q;

pg-dumpO

3. D1comdn
Ibis package maintains process group membership information. There are two ways a process can
relate to a group:
1. As a cn that sends requests to the group. Due to a restriction on addressing modes, we

distinguish between the me of a client known to the group, with unrestricted permission to
use the group address in its address lists (see BCAST(K)), and the me of a client that the
group doesn't know about in this sense, who con only broadcast to the group in a restricted
manw (see BCASTK) again). Groups am promote a diem to the more powerful form
of addressing using pg.ddkient0, but this must be done by a current member. The routine
is idempotent, so callinS it a few times won't cuh the system or anything, but it might be
slow. A diet con monitor group membership ciages, but will not receive broadcasts sent
to the group and rmot initiate membership changes or add other dieats on its own.

2. As a member. Group members receive messages sent to the group and have unlimited free.
dom to call the routines defined above. Group members implidtly have unlimited address-
ing freedom with resp to their group.

We now describe the various routines available to group members and their clients. See also the
discussion in PROTECON(TK), where the mechanisms for preventing unauthorized use of a
group are documented.
a) pg..createo creates a new process goup; its only member will be the caler process. The

group may be given a symbolic name (if none is desied, a null pointer should be passed for
the name). The system will not verify that the name is unique. It may o be assied an
incarnation number; this is done by and used by the recovery manager (see RMGR(TK) for
details; this may be specfied as 0 if the rmngr is not being used). The group will continue to
exist until deleted with pgdelete unless all its members fail, at which time it will be deleted
automatically. See BCAJ(T for details onerning group addressing. A process con be a
member of an unlimited number of groups.

b) pg.lookup(name) looks for a group with the given symbolic name and returm its group id.
The search is done in all sites that are "local" and "long distance", but not those that are
"remote" relative to the caller (see ADDRESSING(TK) for definitions of local and remote).
If the name is not found, NULLADDRESS is reumned. In the future, pgjookupo will be
extended to support some form of pattern matching and a permission schme under which it
will only be possible to lookup a name if one has "permission" to access it. If several
group match, the first address found is returned to the caller.

c) pg.saddmemb(adds a new process to a preexisting group. It cn only be done by a group
member; this is to allow the group members to validate new potential members. It fails,
returning an error code, if the group does not exist, the caller is not a member, or the pro-
cess is already a member. Since this call cm only be done by a member, pg.joinO is pro-
vided as a convenient way to ask a group to let a potential member join.

34

.PGROUP(DSTRftfIFE SYSTEM TOOIJT PGROUP(TK)

d) pgjeaveO deletes the caller from the desigae group.
e) pjmigrateO mu ta sly adds proem "newpnn" and deletes the caller process from

the group. The discussion of pg..addmemb applies. It fails if the group does not exist, the
caller is not a member, or newpname is not specified wrrectly. Thi rotaine hasrot yet been
inplemened.

0 pg.-deleteO deletes the designated group even if it still has members. The caller must be a
member of the group. It fails if the group cannot be found or the caller is not a member.

S) pgLaddcdiento makes the group directly accessible by the designated dient, but without mak-
ing the client a member of the group. This isnecessary if the dient is to use some of the
more sophisticated addressing modes identified in the BCASr(TMK routines. Should the
dient fail, it will automatically be deleted from this list.

h) p-deldiento deletes a direct aess dient.
i) pg..getview0 retras the current membership of a group as a pgroup data structure, defined

in pr-.grouph and autcuatic&ay included by d.h. The caller need not be a member and the
group need not be directly cssible. Ila view is not guaranteed to remain unchanged. It
is, however, gua anteed to hawe the some value when different recpients of a message all
call pg-etview0 when the message first arrives (but without doing a Lwait0 first). A null
pointer is returned if the group is not found.

) pg-lockviewO lod the current view againt chages and retum the view, which the caner
am use to cmpute an action that depends on the current membership. The lock is automat.
ically released the next time a broadcast is done to the group by this process, or if the pro.
c.ss fails. It returms a null pointer if the group is not found. M ro,, it not yet ivpk-
nwu.d.

k) pg.signal0 sends a UNDC signal to the members of the designated groups and processes,
which are identified by a null-terminated address list. h fails if the caler is not a member of
the group or the group does not exist.

-e I) pM-monitoro monitors the designated group for membership changes. The caller must be a
member, the request fail if this is not the ce. Should the membership change, the call-
back routine is invoked a: routine(pg, arg); where pg is a pointer to a pgroup data structure
containing the new view md the argument is the one givm in the mo to request.

m) pgL.monitor-.ncel cancels a pg-monitor request. The arguments must match those for the
pg.monitor. It fails if the monitor request is uabown.

n) pLjoinO is a toolkit routine that does an RK to the designated group, pasing the desig-
nated message. The message pointer can be null if the group doesn't do verification. The
message is delivered to the Join verification routine (see below). If this routine is undefined
or returns 0, the join is permitted. If it is defined and returns an error code (a negative
number), the join is aborted and pg.joinO retum ths error code. If the caner is added to
the group succssfuly, pgjoO returns 0. A process cn be a member of an unlimited
number of groups.

m) pg-join.verifierO is a toolkit routine with which the members of a group can spedfy a rou-
tine that will validate new join requets. 113 routine is later invoked a

routinemp)
register Omp;

where mp is the message sent in the pgjoino request. The id of the group being Joined is avail-
able in the system field SYLD.CIID of this mesage. The join verifier is only called at one of
the members of the group, but the actual member that will be asked to do the verification may

PGROUrK) DIMTR TED SYSTEMS TOOLKIr PGROUP(TK)

vary. All members should therefore defi this routine if any does and a11 should use the same
verification rule.

Except when otherwise indicated, all the routines return 0 in the event of normal termination and
-1 if an error omurs.

3

.36

* .

* JJA
°~

PROTECTIONTK') DISTRIBUTED SYSTEMS TOOLKrT PROTECION(TK)

1. Synot.e
Some thoughts on protection in ISIS.
2. Relevant Intitrbos

N pgjoin(...)
pgjnigrate(...)ps..sisnal(...)
auverify(...)
au-permit(...)
aujrevoke-perm(...)
bcat(...)

3. Dbhom
Because ISIS will operate in large networks with multiple protection domim present, protection
within ISIS itself poses difficlt demign issum. Two basic approaches have been considered in this
cueection.
The first approach is to encrypt capabilities (group and procss id's) and use the ena-ypted capabil.
ides to mediate access to goups. This approach has been rjcted because the size of the

-, encrypted capability would have to be very lage, henc address lists (which are common in ISIS)
could get very big.
The alternative, which we implemented, treats authentication as an application-level problem, but
provides a reasonable degree of support for authenticating asm. The approach is as follows.
First, members of a proems group are given a dAne to check the credentials of a process wishing
to join the group. See pjoino for details. The idea is that the group members specify a
jon.verifier routine and it decks the legality of the join request. ISIS provides the sender's
address in a secure form, but leaves it to the recipient processes -- the group - to check the
sender's user identification. This is because many operating systems simply do not provide ISIS
with a mechmnism for securely deducng any more information than this.
A reasonably secure mechim , if security is your goal, would be to use public key encyption as

. part of these authentication procedur If a int wishe to join, it would be required to present
credentials to the group, obtaining these from a file that only it can acss, and encrypting the

-" information to prevent eavesdroppers from learning anything useful.
We also support a mechim for athetiatios of individual reqests. See AUtHEN(TK) for
details. The interface is very similar: the group spadfle a routine that authenticates individual
messages, although in thi case (to avoid extra work), it is also possible to permit all messages
from a particular caller to be processed or to revoke a previously granted permission. The
mechanism uses the fikar concept outlined in FELTER(TK.

V37

-V.

V,.2

-.

.4

RECOVERY(TK) DL5TRIBUTED SYSTEMS TOOLKIT RECOVERY(TK)

1. Synepds
A simple program demonstrating the use of the recovery manager routines.

2. P p. S

" rdemo.c - a simple demotraion on how to use the rmgr routines

* What this program does:
* The program creates a process group named "recovery-demo" (or join this

group if it exists), prins the message "rdemo: startup complete, waiting
" for command messages", and (you guessed it) waits for 'command' messages
* to arrive from some mysterious source. The purpose of this program is to
" demonstrate how to use the recovery manager routines to have the program
" restarted automatically and to create or join a process group after a cruh.

How to run this propn:

1. Start up isis on 0 sites.
' 2. Install an entry in the recovery manager restart databae by typing:
" rmupdate I rdemo-progrm rdemo rdemo 1252
" This command creates an entry in the restart databse for site 1, with
• key = "rdemo-program", program = rdemo, and argv - {rdemo 12521.
+ The rdemo program expects argv[1] to contain the interct port number
" for talking to isis. Replace 1252 by the corret number for that site. See
S INT(TK), FILES(TK), RMUPDATE(TKO for details. You have to repeat
, this command for every is site on which you want to run the demo.
" 3. Start the demo program at one of the sites (e.g. site 1) by typing
" rdemo 1252
* 4. Start the demo program at the other sites.
" 5. Now you can experiment to see what happens if you crash one of the
• programs (with cntrl-C or 'IlV') or one of the sites (by killing
• the s protocols process).

* The program should be restarted automatically each time it is killed,
* orafterasiterecoversfrom crsh. If you crash all sitesm nd then
- bring them up again, the process group wiDlbe recreated on thes ite
- that died lt. The rdemo progrums at the other sites will wait until
' rdemo is restarted on the 'last surviver' site..a

To remove the rdemo etry from the restart database type
" rmupdate 1 rdemo-progam

at site 1, and similar f theother sites.

#indude <stdio.h>
#indude "d.h"
E1indlude "~jrmgr.h"

#defi MSGCOMMAND (USRJLAS+O) /S isis entry number for command message /
#defi FLDTEXT 1 /0 message field for command text "

RECOVERYCMK DISTRI3UEW SYSTRES TOOLIT RECOVERYCMK

min-~task - starts up the process group

void mafinjasko

adriSgid; P' proces group address ~

*Register this process with the reovery manager.
* Tha is only necesary if the program was not started by the recovery

manager (i.e. the first time, we it is started 'by hand'). Howeveir,
*it does not hurt to always all rmp...registero.

Restart the poesgop

Sd= rrngrjestart("rewv ry-eo");
if (gid. siteasasO){(

printf("rdemo: rmgprjestart fuiledfn");

& Sart recovery manager view logging.
*After this all the latest pgroup view is utomnatically
0save on stable storage.

0/

printf("rdano: startup complete, waiting for omanad mesaage\n");

*msg.commnand - message hanler for command messages

void insg- x Mad(mp)
message *mp;

char Otezt;

text - ms -getfield(mp, FLD-TEXT 1, (int *));

if (stranp(tezt, "quit") ==0){

RECOVERY(TK) DISTRIBUTED SYS A TOOL3rr RECOVERY(1T)

Call rm r, unregister to tell the recovery mamMer that
* the program wants to exit without being retarted.

rmgrunregisterO;
exit(O);

} else if (stranpezt, "ash") =) {
/*

" Commit suidde. The reovery manager will noti that the
program ha died and will restart it automiatically.

exit(O);

} else if (strnamp(teat, "edo", 4) = = 0) {

* Echo the meuage text to the sreen.

printf("rdemo: 96An", tezt+4);

prif("rdano: unknown command: %in", text);

main

main(argc, argv)
int argc

4 dim Orgvf;

int dient.port; /0 port number for talking to isis 0/

/0

if (arc 1- 2 I (dit.port = atoi(argv[1]) == 0)
fprin f(stdefr, "usage: %6 portn", argv[0]);

Sset up isis stuff

isbnit(zen..port);
rmpri nitO;
isis-entry(MSGCOMMAND, misg.conmmand, "msg...wmiand");

f i

RECOVERY(rK DISTD=UrrE SYSTDM TOOLKITr DECO VERYCTE

tfork-.deayed(muin uk, 0, 0);

1 for GO){

isreado;

.~Ilk

*~ NS

REPLCATION=rK DWI rED SYSTEM TOOLI REFLJCATON(M

1. Syu.
A toolkit routine for managing replicated data.

#include <isis/d.h>

In the service:
issinit(o);
rinit(iteniane, opeer, sizer, reas, writer, fsynce, defult)
dv "item.nUm;
mt (opewer)O, ('sbw)O, (reader)O, (writm)O;
mt ('fqyr)O, ('defamt)O;

In the dient:
isisJmt(O);

fd - ropa(alist, it nmnie, how, finde)
chat "item-.nem;

r. eek(fd, offset, mode)

abytes - rrewd(fd, b ffer, lea)
dia *buffer;

nbyte - r.write(fd, buffer, type, 3mn)
dir *buffer;

nbytes - r.xwrite(fd, buffer, type, lea)
char buffer;

rJsync(fd);

rdoe(fd);

3. Mesa"i

A simple interfm to replicted data is premted. The interfc largely mulates the emisting
UNDC file systm interface, although replimted data need not be stored on dc Buaily, the
managers of the replicted data itn specfy the rouines that wM read, write, etc. ad. thype of
broadcst to use by "ddat" w1m updating this data; in the riteO ("aedusive mode write")
cue CECAST is always used realreas of the default, Normally, the emflt routine will either
be CCAST or ADCAST (sm VSYNC(TK)). C3CASr would be used for structures that ae
nineative to the order in wich updates ae done to differeat data itas; ABCAST whem a strc
ture migbt belav differamtly for different update orden. 11a type field should be tM for a
msaMdfield (we MNESLACESMI).
In the service, the routim re invoked m follows:
opem (itmnnme,how,hmode)

The service should "open" the deosignated itm.nam, the arguments m be defined by the
service but we itended to mimic the argumt to the uni open system can. The opener
routine should return -1 am en error, seting the global variable "r.errno" to the eror code,
end it should return 0 if the open suceeded. No state is saved o an open. The designer
should be aware that the Me desciptor returned to the dient will not be determined from
the ode returned by the open rmut. Tihe dieat file deaiptor is allocated from a per-

REPUCATION(rK) DISTR IUrED SYSTEM TOOLKIT RELICATIONTK)

client table of open "files", corresponing to the various sucesful opens that have been
done. In fact, it is not required that the number returned by different representatives of the
service be the same. If some representatives return error codes, the request is assuned to
have failed and one of those codes is returned to the caller. If all return sucs, the request
succeeds. The designer of the system may assume that the same sequence of r-open
requests is seen by all members of the service, but that the sequence of r-dose invocations
may differ from representative to representative. The designer should arrange that the
representatives are left in equivalent states after the open call returns, which normally means
that all representatives should do the same thing on an open.

sizer(item)
The service should return the size of the file. The return code and error number are as
above.

reader(item,offset,bffer,len)
T-e service shoud do a read at the designated offset. The number of bytes red should be
returned, or -1 if an erroz occurred with the eror code stored in r-erro.

writer(item,offset ,buffer,len)
The service should do a write at the designated offset. The number of bytes written should
be returned, or -I if an eror occurred with the error code stored in rermo.

fsyncer(item)
The service should do the equivalent of an fsynco, returning only when the outiputs previ-
ously done on the item have completed.

4. What about irmevey bvm ares?

After a failure, a member of the recovery service may want to rejoin the service. It should do thisusing the state transfer tool described in STATE_)GFRLTK). To have a restart initiated automat-
ically, use the recovery tool descibed in RMGR(TK). In the case of a recovery from total
failure, the service should take the folowing actions to recover its state: Save dieckpoints of the
replicated data periodically in a file, using fsync to verify that it ha been fully flushed to disk. It
is best to write a temp file and then rename it to avoid the risk that a crash will leave you with a
partially updated checkpoint. Or, you could update a stable copy of the file on every write.
Using the recovery manager, you con determine whether to rejoin the group (if it survived you or
someone else recovered first) or to reload your dseckpomnt.

S. Tramadctim on Iepol sigo
You can use this tool in conjunction with the ISIS tranaction facility to obtain transactions on
replicated files.

".4

REXEC(TK) DISTIUUED SYSTEM T.DOU REXEC(T

1. Sysep,
A packaSe of routines f or ramote eecution of a program.

2. luthbea
#include <isis/d.h>

iiit(O);

r-exec(sites, prog, up, my, usa, pasmsd, alist)
sitejd *sites;
dim "prog, "0arp, "sta, "user, pnswd;

*, address ulist;
S,? 3. Decmi

TbL toolkit routine s provided an alternative to using the LNDC "r ,c" fa/lity. The specfied
program is executed at each specfied ste. The file desciptrs thst we intially open (stdin,
stdout and stderr) point to the system console of the malmle on whkd the reec is done, so be
cWreful what you print. You should use the normal UNIX fadlity if you prefer for these to point
to the comsole of the macne- where the program was run fran.
U tftunately, the LM ct em makes it impractiol to return n dfmte idiosbon of
whether the exec actually suceded. However, for the cme where it w apparently possible to
do the reuec and it wu atnempted, the alin wl contaia a lll-teminated st of proces addresses
correspiondig to the procams that were aeated to do this. For ms we the rxec could not
be done but some detectable error ocurred the sl"t entry for the correopoding site/mmrn will
have process-id number 0 mad the entry field will be equal to the value of the UNX wmo vari-
able at that site. If a sitbcin is not operational, no alist entry will be made. Th number of
entries in the alist is returned, or an error code if the CBCAS to the ruec procesas failed for
some reamo.

. Rexec encypts its messa to prevent unathorizd access to the us name / pmword.
Remotely, it encrypts the posword mad then mpare this with the version in the local password
file. Trhis rnecdanisn is a bit awkward, but it does provide at least a modicum of serity. The

tremo program will be executed in the hom directory of the designated user.
E 4. BUGS

It is unfortunate that rez) cmuot indicate whether the exec actually stueded. The user-id and
password we currently ignored. Everything runs under the isis acmt.

p'

-.p,.,. ,. .-... _
U- : . . , , . ,

. .."a k ll ml mm m m m m m

RMGC(TK DISTDDBUTED STS7TDU TOOLJKIT RMGR(TK

I. Sypsi
A toolkit routine for aisting ia reovery brain failures. Tha tool is still un design. The
curmt version of the reoviny inmger conssts two independent pwts: Aiuaosdc Process Reuset
ing, ad Process Group LoguMIngReswardIi.

2. u~w.Ant.ma& hr 3MR~t
#ilude <ias/d.h>

rmgr..udteq~key, proprin. mgv, evp);
chat *key;
char prapun;
diw ar gvf, eenpa;

rnigrjegit(key);
dir *key;

nmrnpwn~terO;

3. Diemi
The reonvery manger kmps a database of por that it will restart after a site reoves from a
cashb. 7he function rmgrjqidaiw atcxnikally updates the raut datkm. Keym a n arttrury
surig o(up to RbMLE diaracters that umquely minifes an entry in the restart databas. Pro-
risa a progrian nme, ad wgv and emW we vectors of argument ad enwonmnt sumip as in

execve (2). Rmpjzpdate searhe the database for onexisting entry with the given key. if suda
an entry is found, proram wp, and envp will be replawd by the nw values; otherwise a new
entry will be created. Rzztgr..update may be used to dele an existing entry by specifying pro-
gri as a nmul pointer. The utility pog r=mnud (mme RMUPDATE(TK) provides a simple
user interface for ringrjzpdote.

.4,Tw recvery manager keeps "watching" all proesses that it has started up. Siould ay of them
abort, say due to a software error, it will aftomaticelly be restarted. A proces that was nor
started by the recavery mnamy add itseff to the fist of proceses beiq watched, by calling
rmsreg~iakay), where key not refer to on existing entry in the restart database. A process
that want to ext without being retarted ha to call rmgr...wreg~ir before exitin.

4. Dhins
All routines return a nmz value in the ce of erra.or. For rnip..update the following two
erratrcodes we defined

-p ~~RNLLoaCED> The remtr cleaim is ledbemls m o poes is wrruatly updat-
ing it. The call Whouild be retried.
RM-ENOOUND Rmgr..update was esled to delet a entry (progruin - NULL), but
no entry with the Ome key exists in the restart database.

Rzugr.update retur a negatmv value: if it fails for any other rman.m
It is no erraor to vill rmgrjregster if the proces is alredy registered. This may be used to change
the restart database entry asociateid with the proces. Rigr-egster does not check whether the
given key exits in the restart databome. The reovery mnae will print a message on stderr if it

SA

LMGRWrK DmmwRBUD SYSTEM~ TOOL~rr RMGRCFIC

is unIl to restart a prem beueo it cannot find the enury in the restart database.

S. lNW&M. lPr CAM* LW/AiuWq
A Anclude <isisd.h>

isisinmt(O);
ngrjmtO;

rnWn"Jtog(W;
addrs 5

rmp info *rmVjenfo(ppme, noblock);

int noblock;

Sid - rmpraeri)
imp nfo Onma;

Si - rmpJoin(rmi, nip)
rnWpiWo Ormu;
mmw a e mp;

owd - rawMpjetfi M.)
g dii0 ppzmue;

Defied in isiudjzng.h Cineiudod in isisd.h):

-yed src 4
int rni.mode;

I imprinfo;

#dfe RMXLOG Ox~1
#defui R2&.REET 0x02
#defin Rbo&SURE O4

Mwe recovery .maW also, mists in rea pre Xup afte afl is member have
* cabad. Whn restmniq a process gvp after a total crook it is deuiruhie to find out out wid

proem wa the Ist one to fall. For tbe proe a log of dibnges in the proces group view is
kep an stable storage.
(At least) one memb of a pgrup at each site shoul cd mfl rmivjo$ (the process ha to be a
frmn of fth prou). Tha coU saves the current pproup view in a fie an clsk, ad iirroges for
the fie to be updated wenvi the view dhenges. Mwe funciona nWgi..*p-Jq disables automatic
updates to the view fie.

W RMGR(DLWRlUUTED SYSTEMU TOOLKIr RMGR(TK

When a program is restarted after a site recovers from a crash, the program can call rmqrgeto
to get information about the state of a procehs group before the crash. Rmgr-Setinfo reads the

. st pgroup view that was stored on disk into the field rm_view and sets some flags in rm..n&,
which are to be interpreted a follows:
1. RMJLOG not set: A pgroup view file don not exist or it is empty. Interpretation: This is

the first time that a procms at this site bemes a membe of the group.
2. RKMLOG, RN&SURE set, RMNRECENT not set: A view ha been read from disk; how-

ever, this view is not the most re e"t one MMc the views stored in view files at other sites.
Interpretation: A process (or proes) at this site was a mem of the group when the
site (or Just that process(es)) crashed. Other members of the group at other sites were still
alive after this ash.

3. RM.LOG, RI&RECENT, RK.SURE set: A view has been read from disk; no other site
ha a more recPnt view rewrded on dsk. Interpretation: Al members of the group have

ucrahed. This site wa one of the lst sites up before the ash omzed. Rm.view cntains
the list of last survives before the rash.

In order to set RM.RE. JT orrectly, rmgr-getinfo may need to as view files at other sites.
Therefore rmgr-jetnfo might block, waiing for other sites to reover, before it an decide
whether the local view file cmntain the most reen pgroup view. In particular, V rmpg e,d
retwms with al flags set (case 3.), dw progrwm-i cm acmoe dta al sites me, med ia nm_view
have recovered frm du crua. This fact may be used to start a coordinator-cohort style protocol
among those sites for application specific recovery.
If this behavior is not desired, rmg.etinfo should be called with a non-zero value for the param-
eter noblock. In this case rmgr_geto will not block, but it may return with RN.LOG,
RMRECENT set, and RM.SURE not set, indicating that none of the sites th are cirendy ap
has a more rean!Pt view stored on disk.
The interpretation given above is only valid, if the recovey manager routines we used &wording
to the following rules:

1. A program should call rmgr..stwtog as soon as it has joined the group and has completed
local initialization actiom. If the program is restarted after a auh rmgr.starUog should be
caled after rejoing the group and performing local denurv r actions.

2. After a total pgroup crah one of the lot survives should create the group again by alling
pgeate(pa me, rmviw.pgiwn+1). It is imporat that the innation number of
the new group is greater than the one recorded lost on disk. Rmgrstarlog should be
called after global dceanuphreecery actios have been completed.

The routines riqr..sreae and rm'.joM may be used to restart a process group after a total crash.
Rmgr_.reate c ate a new ic-rnation of the proms group (baed on the rmgrjnfo obtained by
rmgr..etinfo) and anmounce the new gid on the new (see NEWS(TK)). "is routine must be
caled by one of the last survives. Other recovering group members should call rmgr.join, which
will wait for the news annoummmt, and will then ja the new group incarnation. Rmgrpjomn
diecls to see if the group still/already exists before it blocks waiting for news wanou ent,; so it
an also be used to rejoin a group after a local ash. 7Te pameter ,mp is pased to pg.join (see
PGROUPMI).
Rmr.restwv provides a simple, minimal interface to rmgr.getfo, rmgr.ceate, and rngr.join. It

summes that there is only one member of a procms group at each ate. The code for rmgrestart
is given below; it illustrates the use of rmgr-einfo, rmgr..areate, and rmgr..join

address rngrrestart(pnume)
char "ppnme;

/%" {

*"' rmgrnfo "nrmi;

-N 47

RMGR(K) DISTRIBUITED SYSTEM TOOLKrT RMGR(K)

iant createflag;
addr Sid;
message "p;

Fnd out whetber to create or join the roup

rmi - rar.getio(pname, 0);

if (I (rani->rm...ode & RMJfLG)
I.

" No previous view logged at this site: assume this is the first time
" the group is started up. Clieck if the group already exists. If not,

c reate the group.

gid = pgJoo g e);
create.t - (gid-site =);

else if (rmi.>rmjnode & RM.RCEN() {

* Ths site ha a cpy of the most rect group view in its view log file:
mume that all group meabm have auhed md that this site wa one

. ofthelltsuwvivers. Ifthissiteisthe frstoeinthelistoflt
'survivers then create the new group incrnation; otherwise wait for
Ssomebody else to ceate the group, and then oin it.

, *I

create-flag = (rmi.>rm~view.pgalist(J.site =- my-site.no);

}else{
.. I.

" The group view stored at this site is not the most recent one in the
* system ssume that this is a recovery from a local crmh. Simply
* rejoin the group, but use nlgr.join in case the group has crahed
*in betwom

create-J = 0;}

-/* aeate or join group 0/

if (aatejlag) {
return rmgr-cet(mri);

mp - msg..ewmsgO;
gid - ruWpjoia(rw, up);
mgdeletimp);
return gid;

7. -
In cue of an ror rmgrltarog Md rmngrtopjog return a nonzeo value, rm gretnfo
returns a null pointer, and rmp-eate, rmgr.joill, ad rmgr..mtt return NULLADDRESS.

.

- RMGR) DIMMUTED SYSTEM TOOLIT RMGRTK

.sup

Entrim in the restart databue are stored in the following format:
"key" pro { argl, g2,..., ar} envIenv2, ..., envn}

The rmp will not work propely if the key amtaim quote dwarcters, or if oe of the argument or
environment paramneters contuim Curly brua or acmin .
A much fander recovery manager wil be introduced eventually. The fu=~M of this one wil be
preserved, but perhap not the iterface it supports.

4

,p

o-

V.

.9.

I.

RMUPDATE(T) DISTJtBUnED SYSTEM TOOLK'r RMUPDATE(TK)

1. Nam
rmupdate - update the restart database used by the recovery manager

2 Synopm

rmupdate site-no key
rmupdate site..o (-E] key program argO argl.

$ 3. Duer#"o
Rmupdate is a utility program for updating the restart database used by the recovery manager. It
cals rmgsrupdate (see RMGR(TK)) with the arguments supplied on the command line. Site.no

es on which site the database should be updatd. It refers to the site-id of the site as it is
found in the sites file (see ADDRESSING(TK), site table). The pruneters key, progran argO,
argI are passed to nrmgr.update without change. If the -E option is used, rmgr_update is
called with the environment from which rmupdate was started; otherwise rmgrupdate is called
with an empty environment.

4. Exampke
Assume that the restart database at site 2 does not yet cntai an entry with the key "testi". The
ommand

rmupdate 2 testi sis/test/testprog testprog 1461 -v

creates the following entry in the database:
"test1" r ,,i. testprog {testprog, 1461, .v} {I

If later the command
rmupdate 2 -E testi/'isiatest/testprog testprog 1464

* is issued, the entry will be replaced by something like

"testi" f"testtestprog {testpro, 1464}
{HOME=r/i/shmuck, PATH= .:tusr/Iocal'usr/bin, TERM:vtl O, USER=schmuck}

Finally, the conmmnd
rmupdate 2 testl

deletes the entry from the restart database.

&. Bp
It is currently not possible to specify environment values explictly.

J.q

,

I

SEMA(T) DISTMBMUTED SYSTEM TOOLKIT SEMA(TK

1. SynOpa
A package of routines implementing distributed Semaphores.

2. Interfms

#include <isisc.b>

isisjnit(O);

Pb(alist, sname, free.onfailure)
address alist;
char *name;
address free-onjailhre;

Pg(alist, saame, free.onfailure)
address Oalist;
char *name;
int free-on-failure;

.." :Vb(alist, ame)
*" -" address alist;
*; char *name;

Vg(aist, shame)
address alist;
char *name;

V semxfer.out(addr, len)
char *Oaddr;
imt *lea;

sema.xferin(addr, len)
char "addr;
int len;

sena-dumpo

3. Duai.
The semaphore tool is used for stion in a process group setting. By employing it, a
process can obtain mutual exlusion with respect to some set of other processes that know of the
semaphores it is using. The argument "alist" is a null-terminated address list that identifies the
processes and proces groups where the semaphore lives. All semaphore routines return 0 in the
normal me and -1 if the prcses corresponding to the alist have all failed.

The tool provides both binary (true/alse) and ner (integer valued) semaphores. Each sera-
phores is identified by null terminated character string, which need not be declared prior to the
first use. A general semaphore will block if the number of VSO operations done sinCe the sema-
phore was first referenced is smaller than the number of PgO operations done so far, including the
current one. A binary semaphore will block unless a VbO was done subsequent to the last Pbo.
That is, a general semaphore is initially 0 and a binary semaphore is initially false.
The semaphore schme is a "fair" one: P0 r;quesm are satisfied in the order they are received.

SENL4CrK SYSTEMUTE -OL SEMA(TK)

The argument "free-onjailure" indicates how the semaphore subsystem should handle the failure
of a procss which has done a P0 and has not yet done a matching VO. If this argument is null
(actually, NULLADDRESS), the semaphore subsystem will not worry about failures. If the argu-
ment is a group id, the semaphore system will watch the caller by monitoring that group, to which
the semaphore holders must also belong. If the holder fails, a VQ of the appropriate type is per-
formed automatically. Semaphore users must either employ this mechanism or some mechanism
with equivalent functionality to avoid deadlocks when a semaphore holder fals. Use of an alter.
nate mechain might be more appropriate if some deanup actions must be taken on behalf of
the semaphore holder before the mutual exclusion it held can be released.

4. Camment
Semaphore synchronization is compatible with all tools that maintain replicated data.

S. State tramfer
To generate a block containing the semaphore "state", call sec.,xfer-out; it will assign values to
addr and len as required by XFER(TK). "he block em be read in using seami _erjn0. Only
one block is needed for the semaphore state; the length will depend on the number of semaphores
in active use.

6. Bug. and reshictlow
To make use of the free on failure option, a semaphore operation must be applied to a process
group to which the caller belongs. This is because free on failure uses the watch tool, and the
watch tool arrently only supports watching procass groups to which one belongs. This restriction
will eventually be eliminae

9.,

52

'e..' M&',Z\' ArA JCA dil f '

STARTUPtK) DISTRBWUTED SYSTEMS TOOLKWl STARTUP=

1. Synope
Startup sequence. for processes using the TASK mednihmn Non-TASK use of ISIS is not yet
supported, so you MUST use this interface.

2. Intaeldm
#indude "d.h"

'-"/0 Entry code by which ea-SO can be called 0/
'.4 #deflm ETNG(W -AEO

main(argc, argv)
char *argv;
I

int foregroundo, eaunsSO;

p-" /0 Initialize connection to ISIS /
%"-,,isis..init(O);

/ Initialize toolkits .I
- ... toolkit init calls ...

* .
,

.. ..--, P-

- -". / Initlalize entry pints this dient will)ufrt "
isis-entry(EAT..MSG, eausmg, "eat.sg");

/0 Fork off the foreground task, if any 1
tfork..delayed(foregrand, 0, 0);

/ Main loop: run tasks and receive messages "
forever

%- f~rurntm ;

sisereadO; /e This blocks, btt see below 1

/0 This task is the "main" procedure of de prograr ./
foresroundo

...stuff...
VI

/ Routines to process received messaes/

eating(nw)
mmag Op;

... stuff...
I

/0 Soft recovery from an ISIS system crash that left me running "/

/0 In fact, I prefer to print a message and die

,,.." z.,

STARTUPC DISTRIBUTED SYSTEMS TOOLKrr STARTUP(T

return(-1);
}

3. Discusion
The above program executes a typica sv-.,ip sequence by initalizing a connection to ISIS, declar-
ing the messages sent to entry number EAT..SG will be handed by a procedure called
eatmsgO, and then spawning a foreground task that acts as the 'main procedure' for the pro-
gram. The actual main procedure then loops nrnng tasks and reading messages; it may also
wat to d non-blocking 10 on other /0 dannels. Messages from the ISS protowls process and
other remote processes are received over the file desciptor called isis..soret (a global integer).
The routine isis..reado will read a message over this socket, blocking until one is remved. It then
spawns a task to deal with the arriving message.
The reader should refer to IN1T(TK) for information about the mysterious argument to isisjnito.
To do non-blocking 10 from ISIS it would be best to dange the main loop to do a select. For
example, the followin code other reads from isis or from the file descriptor "spcljdes", depend-
ing on which one has data available.

#include <sys/ypes.h>
#incude <sy&tme.h>

forever

fdje inmask;
extern isissocket;
runt.tasksO;'L FDZERO(&&nmask);

FDSEr(isis-ocket, &&,mask);
FD_SEr(spcLfdes, &imask);
/ Block until input is available /
select(32, &in.mask, (fdset*)O, (fd..set')O, (struct timeout)O);
P Read from ISIS and create associated task to nm later 0/
if(FDJSsET(isissocket, injmask))

"" I Read from spedM file descriptor /
if (FD.JSSE(spdjdes, &_muk))

* spcLreadO;

The above code works n follows. Within a single address spae, the foreground task and any
-4active message-processicg tasks will co-exist, switching off using a coroutine mechanism styled

after monitors, as described in TASKS(TK). In this particular ue, arrving mesages with entry
number EATMSG will be passed to the enatmeo routine, which should procs the message and
reply if necessary. Meanwhile, if data become available on spd.jdes the routine spdxead winl be
called; it should either do the read immediately or fork off a task to do it when nw-tasks is next
run (in fac, one might simply fork off the task directly, as in tforkdelayed(spdxead, spdjdes,
0)).
Unless some task explicitly calls "exit", this program will run until an error iommumceting with
ISIS occurs or the site fails. In particular, if the foreground procedure return, the program just
become a passive service responding only to new requests. If the foreground procedure remain
active, blocking periodically or doing cells to other processe, messages will be received while it is
blocked. If it enters an infinite computational loop, it will not be interrupted. In addition, if it

-. .

client Question servers Hot standbys

qI .. q lh Operational with 2 hot
I _____standbys

Process q4 falls
I.......X qnhi h2

.........................q1. q4h 2 Process h2 takes over for q4

Proces h3 started as a new
........................qnq~h 2 h3 standby

Process q I migrates to h2 to
h 4 q2......... qn q4 qj h3 adapt to changing load.

Client uses group RPC to query a 20-question
program while it dynamically reconfigures after failure

"AIN

2r55

START"UPT DlSTRIBUFED SYSTEMS TOOLKIT STARTUP(TK)

reads from a blocking 10 device like the keyboard, mesuges will NOT be acpted until the 10

terminates.

A more useful foreground procedure would be the following: it creates a group:

foregroundo

gid = pg.create("group-nome");
,i f(gid.site == O)

paic("create of group <grouprn=> failedhn");

A more complex medcanism might start multiple group members up using the is remote exec
faclity (REXEC(T)) and verify that each member is allowed to Join the group. An example of
this is given below.
Here is a second example: a process that wishes to act as a diem to the example.group defined
above.

foregroundo

/0 Eample of process group creation and a broadcat
static address addrs[2];
static char maw8];

message mp;

addrs[O] = pgjookup("groupnamne");
if(addrs[O].site -- 0)

pnic("pgjookup <roup..name> failed");
mp = msg&A;wmsg;
addrs[O].entry -EATMASG,
if(CBCASr(addrs, mp, ALL mrw, 8, (addrmus)O) 1= 1)

pmnic("Got unexpected number of replies from CBCASfl;
printf("After CDCAST: received <%s>\n', amsw);
exit(O);

It should be noted that this client doesn't obai "direct access" to the group. To give it direct
access it would be sufficient for the group member to call pg..ddcient(sender) in the eat..msgO
routine. The termination of the cient would automacally trigger a pdeldientO.
The code below conists of a twenty-questnm propram and a questioa/anwer program that acts
as its client. The twenty questiom program asumes that its remote representatives will start

,,%themselves up. More realistic would be to use the 'r-exce facility for this purpose, but this would
make the exampl a bit too cmnplex.
Both programs referc the following include file:

#define TWEMYQMY (SERJBAW+O)
#dermn TWENTY_/BMrr RU.RERBA + 1)

dn _TWENTYCAT 0
#defi TWIENTYCLASS 1
#dfn TWENTY-QUES 2
#define TWENTY..DB 3

The question databme program is a follows:

%1"

STARTUP(TK DISTREBUME SYSTEM TOOLIT STARTUP(TK

* A twenty questions proam

#iduf "dh

#izc!ude "twenty.h"

int main..proc(J, On-rocJ, twenty..Abjito, twenty-queryQ;
addrVss Sid, atoeddro, pgjlookupo;

mnt znahnpros;
int verbose;
mnt my-.~number;
int QIENLPORT;

minm(ac, argv)
dim0ar gv,

wblle(arc-> 1)
swtdb(0+ +.rv)

default:
bmdarg:

paic(w"ed argument: <9Es>\n", *argv);

mue 'in': + +inain..prog; continue;
me 'v: + +verbose; continue;

*default: goto bsdarg;

cae '0: cue '1': me '2': case '3': cue '4':
cae '5': cue '6': cme '7: cue '8': c '9':

CLIENT-FORT - atoi(argv);
continlue;

P Coinnwz to MSS tben fork off apprprate procedur /1
isis-init(CLINT-.PORI);
Pg.JnitQ;

V s-eny(TWETYDEIJN1T, twety-.Abjmt, "twenty..dbjit*);
hus..entry(TWENY..QUERY, twnty..query, "twnty..qery");

V if(inain..Prog)
V t-fork.deayed(mun...proc, 0. 01);

a..., elme
tLjork.delayed(OiLproc, 0, 0);

U /0 Now enter IRIS man loop 0/
forever

STARTUP('rK) DTRB EDSYMTIM TOOLKIT STARTUP(rM

condlition ncuxnt;
mnt nmefbers;

P. Monitor dmane to view 0/
~~8 tzmngd, pg, arg)

address gid;
pgrop Opg;
dhar 0 arg;

if(pg.>pgjnmb - = meibers)

t..sig-delayed(&mwunt, 0);
pg-momitar-ca.mI(gid, tmnon, 0);

#defin NMEBER 5

#defin NCAT 10
#de MiNES 200
#defin NFIELDS 10
#define SrRLEN 10

cha &* 2E~jFI2DS)rRLEN];
Char OalesfNCAIIh

Startup of the min proran 0
makoc

register FU.E *M~e;
char anwNNMEfBERS];
registerc,

if((file - fopen("questioms.dat", "rw)) - 0)

perror("questions.det");
pnc"w't read the questions dataue"u);

w(c fgutfiMe)) >0 && c I-Nn')

register dw. Ofp = db(O][nfield+ +];
do

efp++ - .

Ofp 0;

STAwRUP(rK DITRUTED SYSTrEM TOOLK~r STARTUP(TK

n~iies = 1;
whfle((c = fgetcflc)) > 0)

register n;
for(n = 0; n< nfies; n+ +)

registr da Osp - db(nlinm](n];
WMIe(c I= W fl&&C I= t' && C> 0)

*++- C
*sp w0;

gid - pie(u"twetyquestiow*);
if(Sid.ste==0)

cai("n't ereste the proau pcoupl');
nuaber -NMNiBERS;

pg...mnmtor(jid, bnon, 0);
Lwat(&mnot);
twinitQ;

addres addrs[2];
reitrmeage Op;

register arep;

pit("[%d]: %d member, %d fields, %d Iines in db, acat %d~n",
myjzmiber, NMEMER, tifeJds, niines, nzat);

addr(O] - gid;
addrs[0J.entry - TWENTDBlM1;
addrs(l) - NLUADDRESS;
mp - nUs4CDsensgFWENYDB, d~b, FTYPE...CHARs, nlizus YmTREN - NFIELD);
arep -CBCASTEXMaddrs, up, ALL, =nw, 1, (adess)O);
Ksdeletemp);

prnnu"%d mrs adwnowe initiahizationWnrep)

/* Startup of a sub-program 0/

vrmit. mosage mp - =&_wmsgo;
gad - paJooWV("tMy-qmdcuu);
if(gidsite -- O0)

if p~ id, up) 1- 0)
"jon W~ed");

*mgdzenp);

1. sub-propunm reception of a database 0/

tw'ydIntnp

STARTUP(TK DISTRIDUJED SYSTEMb TOOLKIT STTP

regiter message Omp;

intdcblen;
char dbinit;

dbint = rnsg~etfield(mp, TWENTY..DB, 1, &dblen);
bcopy(dbinit, d~b, dblen);
for(nfields = 0; db(0][nfidls][0); nfields+ +)

ccmtinue,
for(nlines - 1; db(nlineJ[Oj[O]; nlins+ +)

coninue;
twjinitO;
printf("[%d]: %d fildsc, %d line in db), ncat %dD,

my-number, nfields, nline, ncat);
reply(mp, "4", FTIYPE....QARS, 1);

*Compute vaious stuff from db and from view.
*nfields fields in db
*niin length in lines of db
* iat = number of query categories
* my-nummber = internal 'Id' of this process: 0.. .NMEMBERS.1I

* n 'If query mode, Process my...UMbe-m is resPOMibe for line I15.t. I mod m =0

*In V query mode, this Process is respomible for fow r s~t. r mod m - 0.
*Program will not function at all with fewer than NWMES tisrnn.

twjmnto

register ni, c,
register pgroup OpS pg~etview(gid);

if(pg -0)

fcir(n= 1:n < nm; n++)

aaunes~nzt++] d n()
c = n

for(n - 0; n < pg- > pgjimnb; n ++)
if(=ad~ eum(&p. > p..liztn], &My..aa) -- 0)

my-pmmber n;
4'. break;

STARTUP('rK DISTRIDUTED SYSTEMS TOOLKIT STARTUP(TK

twenty-query(mp)
register message *mp;

register cat, class, f, ni;

register diar *qey,*eading;
ct= *(int*)ms&getfield(mp, TWENTY-.CAT, 1, (int')O);

cat %= nit;
class - (int)sg.getfield(mp, TWETY-.CLASS, 1, (int-)O);
query = Msg-..pdield(mp, TWETY.QUERY, 1, (int*)O);

*1 heading = query;
VII wile(query 1=')

+ +query;
*query++ - 0;

for(f -0; f< nfiels; f ++)
if(stranpdb(0][f], heading) -- 0)

break;
/0 In H mode, reayow answers. in V mode, only one =man .
swi(dass)

int aunt,

case 'fr:
answ -0;
count =0;
if(f = =nfields)

else for(n - 1; n<nines; n+ +)
if(strcmp(clb[n][0], awmes(ctl))

cntinue;
else if(coum+ + % INMEMBERS - -my-mumber)

if(stranpdb(n][f], query) -- 0)
mnw - (arw && *anw =Y'?":Y:

else
amw - (affw && monw I- WN)? "?": 'N";

reply(mp, atw, F IY 7,0{ARS, 1);
break;

cae V:
if (f % NMENME I- my-umber)

break;
if(f ==nfields)

anw

£ if(strancdb(nj[0J, camues(cat]))
onnue;

aelse if(stranp(db(njrnl, query) 0)
Inw -(amw && 0answ !YV) "?"Y";

else
onw -(onsw && * nsw ' N)

reply(mp. aw FTYPE3JIARS, 1);
break,

STARTrUP(r DISTREB31TED SYSTEM TOOLSIT STARTUP(TK

default:
reply(rnp, "eFTYFE...CHARS, 1);
break;

Here is the question-answer propti that the user sees:

Front end Mror= for playing twety questions

Andude "d.h"
#incude "twenty.h"

int verbose;
int CLIENL-PORT;

mainargc, argv)

int as-utons(J

whlle(mrg- > 1)
Switch(*++arv)

switch(* + + argv)

cmc'v': + +vmibose; continue;
* default: printf("-c: unknown option\n", *argv); continue;

Ve'0: cme '1': cme '2': cme '3: cme '4:
* mae '5': cue W6: mue '7': mue W8: mue '9':

CLIENT-FORT - atoi(rgv);
continue;

* 1./ Commat to ISS 0/

* /* Runs na tmk *
L-fork-ayd(akqumdtom, 0);

forever

Wruwcs;

ink..qustionso

* STARTLTP(TK DISTRIDUTED SYSTEM TOOLKIT STARTUP(TK

int cat, dass;
char string[1201;
register dwa *sp;

.1'. register q
address addrs[2];

addrs[O) = pgaookup("twenty.questions");
ES.if(addrs[O]. site = = 0)

panic('twenty-questioms asker - con't ce to database program");
addrs[0].entry = TWmEITY...QUERY;

S addrs(l] = NTJLLADDRESS;
-printf("WeIoe to... twenty questonsln");

print("Enter a random number:-)
sp= strins;

while((c - getduro) I- '\n')

JI Osp 0;
ca atci(string);

pnintf("Enter R-query or V:query... \n");
forever

print("Oiestion?)
c = getdiaro;
if(c < -0)

break;
dass = C;
whfle((c = getdwao) 1= Nn')

4.if(C = =T
4. break;

Sp- stin;
while((c - getd3.r) I- Nn'

if(c I- , '&& CI- \t')
osp++ - C,

esp =0;
if((dau I - If' && din I - 'V) Istrlen(string) - 0)

prnff("Enter Hxat-value or V:W=vaie.. .\n");
else

register message Op
register awant, erq;
char answf2)];

nW~ (di.- WH)? 1: ALL;
mp- ms&gjunag(TWENTYCAT, &cat, F IYPELUNG, izeaffint),
TWENTrY-CASS, &das, FTIY "%.SONG, uizeo(Cnt),
TWENTY-O.QUS, string, VIYPE.CHAnS strlIe(string) + 1,
0);

irep - CBCAST(addrs, mp, awant, mnw, 1, (addr));
mnwfmwlp - 0;

pnintf ("Bye.\n55);

'S-

STARTUP(TK) DISTRIBUTED SYSTFM TOOLKIT STARTUP(TK)

exit(O);
}

3.1. Getding ncy
The above twenty questions program is not realy very fancy: it doesn't restart itself very automat-
ically. Here is a much improved version that automatically starts up NMEMBER+NSTANDBY
copies of itself and brinp up a new standby after each failure. A standby takes over as a member
instantly, so the number of members in this example should never drop below NMEMBERS. (If
it does, however, the twenty questions program shown below would abort itself and qa would get
0 responses to all its queries - a better solution to this is proposed below, but it involves danging
qa too).
We made a slight change to the qa-twenty-questions interface in this version: it returns a two-byte
answer to queries indicating "who" gave the answer (a number 0..NMEMBER-1) and what the
answer they give was. The idea is that even though the task assignment may vary, a caller would
always get exactly one answer from each virtual member.

A fander twenty questions program

#include "d.h"
#include "twenty.h"

int mai c, Joint, twenty-quyO, helloO;
imt startO, nezibneO, restart.,.erO;
address gid, atoaddrO, p.ookupO;

mnt must-join; /0 Flag: this process must join 0/
int my-number; /" Virtual member number, see below I/
int CLE2NT..PORT;

#defie NMENBER 5 /" Wants this many members /
#define NSTANDBY 2 /0 This many hot standbys "

char dbNUMNS)(LD6](SrRIN],
char cnames[NCAIJ~hTRm;
int nfields, nlires, ,at;

main(argc, argv)
cI argv;{

while(arg- > 1)

default:
-. bada'g:

panicBd argument: <%&>\n', "argv);

cme-
switdi((°rgv)[l);:: {
cas 'j': + +taust-join; contim;

default: goto badarg;

' "-'..",." " ;, "-'- ." . . -'"t: .. ' a ' , ' ' ' ' ' ' " G

STANR P() DISTREIBUTED SYSTEM TOOLKIT STARTUTK

case '0': case '': case 2': case '3': case '4':
case '5': case '6': case '7': case '8': case 9':

CLIENT.PORT = atoi(*argv);
continue;bI

/* Connect to tSIS, fork off appropriate procedure /
isisinit(CLIENTORT);
allow..ers(start, nert.ine, restait.fer);

isisentryCTWENTYQUERY, tweqV-g4 , --.-;..

if(must-oin = 0)
tjork.delayed(min.proc, (diar)O, (mmWe)0);

else
t-orkdeayed(jciAprc, (dw*)O, (message*)O);

/* Now enter ISIS main loop /
forever

:" {
run.sksO;
isis-eado;

7"1'

* static pgroup cur-pgview;

" Monitor changes to view.., all members see
* the same view, so the cordinator can be selected

as the first (==oldest) Isted member. The oordinator
° does restarts as needed. The first view is passed
0*in manuay after pg.rasteo but treated just like
"any other. Only starts oe proe (if any) per

invocation, but sinee each start will change the view,
keep doing this until ewgh members are rnning./0

tmon(pg)
pgroup pg;
{

-~* esgid;

gid = p->pg.gSid;
cm_,pgview =p;

/" Repartition the database based on new view 1
work..partition(pg);

/" Coordinator is the oldest member of the group 0/
if(cmp..addresa(pg.>p g..ist, &my-addess) = 0)

4

STARTUP(MK) DISTREBUTED SYSTEM TOOLKIT STARTUP(T

if(pg->pgninab < NMEMBER+NSTANDBY)
startoneo;

#define TWENTY "/fmooseA sis/dient/twenty"

Chr Ojargsa

"twenty", "T.j, 0, 0

" Start new program. If a failure takes plow during this cal, it
either o pletes first and the member is seen to)Oin before the

" failure is seen, or the failure is seen first but the Join won't
o =cw - a nifty use of virtual synchrony to avoid a complicated
mess of figuring out if a restart was in progress and how it

*terminated!

starLoneO

static sno;
static siteid sid(2];
address pname;
register sitejd sp;
register Mites;
sview "v, "sv.getviewO;
char dient[30];

I.

Pick a site to start the thin at, try to distribute processes
over sites in a reasonably uniform manner so all won't run at

• the same place. v.>sv..slist[sno] is the site we settled on.

v = svetview(O;
for(sp - v.>sv.sW0t; "p; sp++)

continue;
smites = sp.v.>svist;

if(sno >. nsites)

"sid = v->svj itsno];

sprintf(dient, "%d, CJIENT.-ORT+3sno);
p[rs2] - client;

r._ezec(sid, TWENTY, prp, (char")O, -isis", "nuilpas , &pname);
if(pname.site - 0)

psnic("Con't rere 'twenty' at site %d%dN",
SITEYNO(*sid), SMTEJNCARN(*sid));

/0 In case of an interrupted state trasmfer, restart wbere it left off "/

66

STARTUP=TK DISTRUFED SYSTEMS TOOLKI STARTUP=TK

restart-i.fer(bno)

return(bno);
I

/ Startuip of the main program .

'N, ~Pgrouzp pg..etviewo;
register FILE *file;
char answfNMER];
register c, n;

if ((file = fope2("questions-dat", "r")) ==0)

-N peiro("questions.dat");
parnc("can't read the questins data.")

do

register char *fp - db(0][nfilekh++];
while((c -fgetc(fle)) > 0 && c 1= -\n- && c!=t)

Ofp =0;

while(c!I= *\n' && c>0);
nlines=1
do

tor(n =0; n< nfils; n+s-)

register dwi *sp - db~nhineXn];
while((c - fgetcflc)) 1= \n' && c 1= 'W && c > 0)

O =++ C
Osp = 0;

if(db~nlines]OD
+ lrs

while(c >0);
na- 0;

- C 0

for(n - 1; n < nlie; n+ +)

strcy(~a nmnz++], dbn(0D;
C = n

1* Now start thing by creating the group... 0
Sid - pgcrate"twinty..questioms", 0);
if(gid. site = = 0)

pn"cmn't oveate the process group!");

STARTUP(K DISTRIBUTED SYSTE70 TOOLKMI STARThP(K

/0 set up to monitor c°nges
pgmonitor(Sid, tmoan, (diar)O);

P- First view won't get sent to pLmonitor, so send it manually *1
tmon(pgc&tview(gid));

JI.

IbT•is sets up to start a state tranfer; all current mebers participam
SSinc al see the sme our=t pgroup view (coped to the side in the

" tmon routine), just coy the site list from the view into the iist
provided; al do this in parallel and all see the same view, so all
use the sne alist. Tis is the simplest way to generate the sust.
we could also have copied msgetdests(inp). Tle is no obvious reamon

" to favor one ova opposed to the ot here. (The dests fid will have
' been expanded by nw, of core.)

start(mp, who, Sid, ap)
register message "p;
register address 0p;
address who, Sid;

address "pj - cur-pgviw.pg.-alist;
do

0ap - *pg++;
wlle(ap+ +.>site);

i % }

'? /.

" Send one line at a time, which is pretty inefident (too sman), but for
• purposes of the demo illMustrates a multi-block trnet. actually, should
Ssend the whole db at onc, sine it is really not very large.
0/

nex_hneine, buffer, type, len)
dw Obuffer;
int type, len;

if (line > - Wines)
return.);

•buffer = dblinef]OI;
*type M O;
Olea - nfields*STRLEN;
retw(O);

/ Get a line, set aoe /
gotline ln, buffer, lea)

dia *buffer;

bcopy(buffer, dbne], len);
/e }

".' /" Q~usesthito fredoutow billtiedatabnse is "/

"- ' , , - - - - - -. , , , ,, ,- - ,. , ,,.,.., - ... "

SrARTJPCrK) DEMMUMTFD SYTEM TOOLXr STARTUPCrK

heilo(mp)
register mesnsage nmp;

if(my-jiumber)
return;

reply(nip, db, IIYPE...QIARS, NFIELS-STRLN),

/0 Startup of a sub-progrun 1

register message Omp - g...newusO;
register rv,c, n;
jut sotlineO;

gd- pjookup("wentyqueStiow");
if(gid~sate - - 0)

Psnic"pg.Jookup fafled");
if((r'v - aMj~igerf(id up, gotiiie, X...BG)) 1- 0)-npgjoin failed. rv %d", rv);

' usg..deletemnp);
for(nfiekks - 0; cIb(0][nfields][0]; nflejd+ +)

Wnfinue;

ncat = 0;

for(n-1; n <nlines; n+.)
if(stranp(d(n(O], d~]0)

c -n;

*same ftri& as above, although this proeu is wfikey to be the
*coordinator yet.

p-monitor(gid, tmo, (daur)0);

Each time the group view changes, ivide up the work.
* 0mb the pogrm if the an mmbe nrs drops too kmw

A * The idea is to have each Process know a 'virtuai" nmuber
*that defines its rapomibity for c h dunk of the database
*if my-number is i, tlis proces handle V mode queries for
*cohum that, mod NMEMBERS, have inde i, and H Mode queries for
rows that, mod numbers, have indx i

work..partition(pg)
register pprou Opi;

~ .~* ~.**'! '
V

STARTUP(TK DLIREBUTED SVST"~ TOOLKITr STARTUP(TK

register address *ap;
static was-.up;

if(wu..up &A pg->pgjimwib < NMdEMBER) fuurANADB)
pan4c"Can't tolerate more than %d simulmosfilrs" NTNB)

else if(pg. > p&jmnab > - NMEMBER)
+ + was-up;

for(ap - pg- >pg-alist; ap- > ste; p+ +)
if(ampaddreu(ap, &my-..dru 0)

my-msmber - q,.pg.>pg-ulist;
if(mny-unber > - NMEMBER)

1* Standby's We negative numbers 0/
my..number -NMEMBER-my..nuznber- 1;

return;

pk,.p"orPrtitoa rm not in the mlii: (never bappmfl);

twenty-query(znp)
register meuq Pmp;

register cot, dinu, f, n, comp;
register char equery, hbeading;

query - msgjetfrld(mp, TWENTY-QUES, 1, (int-)0);
if(query 0 - 1 nt 0)

* print(-BAD")
pamg(mp);
sndreply(mp, '*'I;
return;

cat - 0(inte)U11sjefield(mp, TWENTY-..CAT, 1, (ints)0);
cat %- nt;
clas - 0(intOse4.geffield~np, TWENTYCLQASS, 1, (int)0);
heading - query;
whie(*query I- '-' && Oquery 1 >1~ & &query -'<'&A *query)

+ +query;
-xn =query;

*query++ - 0;
for(f =0; f < nfields; f+ 4)

if(smranp(cR]0Jf], headn)=- 0)
break;

1. In H mode, everyone answers. In V mode, only one answers

char *anw;
int count;

SrARrLPWrK D57TRIUTED SYSTEM6 TOOLKIT STARTUPCTK

case lI':
if(my-nmber < 0)

I. Hot sadb's don't madrespose 0/
reply(mp, (diu)O, 0, 0);
break;

anw =0;
count -0;

-V f(f- filds)
aws - F

else for(n - 1; n< nhnesn+ +)

if(stramp(d(n[O], cames catD)

else if(count + + % NMEMBEER - - y.number)

if(compare(onp, db(n](fJ, quary) -- 0)
mnw - (anmw && OMuw 'n? "" Y

else
anw- (azuw && *aiw W-'N)? "7: N";

if(atkW -0)
13 0

sndjeply(mp, $answ);
4.. break;

cae 'V
if(myjzumber < 0)

break;
. if(f % NNMENER I- mnu.mmber)

W - 0;
ifyf- -nfiews)

-M - "';
else fc(n - 1; a< nle; n+ +)

else if(a mpue~aomp, dbfn](fJ, query) - 0)
m - (mww && *W ! Y')? 7" TY;

else
mnw - (azuw && answ TflN'? 7: N";

if(uw--0)

break;

deau.t:
'U..' anreply(fp,)

break;

s'rARrUPcr DK)TREBUTE SYTEM TO0Lx STARTUP(F

This version sends two-part replies: the index of the respondent and
the answer from that respondent. Caller will get exactly one mwe

* from eaci respondent a long a the number of proceses nning is
* at leant NMEMBERS. See discusson below for the case of too many
- failures to tolerate.

smdjeply(mp, rep)
register message "rp;

diar mw[2];
answ(O] = my.m ;
mw(l] - rep;

reply(mp, maw, F1 Y E..HARS 2);

/0 String comprison, implements numezic ucaler copriso too-/
compare(op, sl, .2)

diar "sl, %2;
' {

restr nI, n2;
if(op I- '<' && o I-'>')

return(strcip(s1, 2));
nL = atoi(sl);
n2 - atoi(2);
if(op - - '<

return(i >= n2);
returm(nl <- n2);

}

We promised to explain how we could have haxled the numbe of mmbers dropping below
NMEMBER a bit more graceully. Notice tat all the members would detect this situation, its
just that they pac in thi exmnple istead of doing anyting. A better sohmon is for the group

*. to reply "unavailable" One inber would hive to do "double duty" and cover for the inuing
* member(s) in the ,nglk-m* query mode, or the QA prorm would hang im that e.

Meanwhile, the coordinator is franticlly bringing up new nmbers., so with luck the situation
wouldn't persist for long. A qa prolpn tha ets an unavailable repoe would hive to wait a

* few secomds ad retry.

',_

I

A' SATELXFER(FK DISTRIDIXFED SYSTEM TOOLK~F STATEXFETrK)

1. Symap
A toolkit routine for transferring state from a process group to a process that is Joining it,

#1inclu& <Lsid.h>

/0 Client side 0/
is...imt(O);

'4'- ~jaut...xo ertjid, mp, routine, si=)
address Sid,
message mp;
mnt (*rouin)O;

I* Seve side 0/
aflowv-xfer(stwtine, dlatajroutne, restartroutine)

int ('statroutine)O;
int (dcata.routine)Q;
it (*restartuouzine)O;

3. Daesi
The state transfer tool is normally used by a prces that wis to joan -emmtig proces group

* without preventin clients from using the group, but -Feth a copy at acme state information to
begin functioning normally. The tool Indes" the)=a wad state transfer event so that' dients, see
this a an instantaneus transition.

4. Whbf a 11101?
The tool assumes that proceses can represent the state of their coputatior in some number of

'Vblocs, which can have arbitrary and variable size. The programe must somehow write code
that leas the tool "read" this state, one "block" at a timne. For exinaple, in the twenty questions
proprain, the state is bmacefly the contents of the %J' data suucture - everything else can be oix-
puted or obtained from ti like the process group view. In a tramsetitial application, on the
othe hazad, the state should include locking informatio and output of unmmitted trmawtiois

PA.So, if you use trarsetiors you either have a difficiat state puaging problm to overcome (sice
that tool won't give you this information!) or musat do the transfer we nothing that matters is
running -- for ezinpl., by sauuning reed lok on the transonal files before staig the
transfe.

S. Hw om d
The process wishing to jam the group invokes joinan.azderfJ, specifying the group to Jon. a
message for the jomn-.verifier (see pg~joino in PGROUPS(TK)) and a state recpton routine. The
size argument indictes if the trmfder will be a big one (X..BZG) or a inall one (X-9ALL). A
lage transfer is do=e uung a TCP stram channel for hgb perforinm md would normally
require that multiple data blocks be ormnputec! ad copied. A ainall state transfer is assumed to fit
into a single message, which could be fairly large. In this cae, the overea at a conecton set-
up is avoided, but on the other had, the data a tiunfered by M~S and the throughput is
quite a bit lowar thus usiig TCP.
Jout..ancl~fer operates much like pg.join(gid, nip). Assuming that the joi suwmed, however.
the transfer tool run a cxorclinator.(xohort algontim in which the minrout .ne repatedly
requests blocks of state from the generation routine and dlelvers them to the reepnon routine
The diemt's reception routine is invoked a routui(bis,data,blen); whe be is the block number

04

TASKS(TK DISTREBUFED SYSTEM TooLuiT TASKS(TK)

7.3Ba.
'The stack overflow dheck should be done autoeiaicafly on every procedure ca, say by using a
modified version of the mwount procedure that get linked in when a pogam is compiled with

.p-Q

e,-* A'** - - - - - -

TRANSACTIONISCTK DISTRIBUTED SYSTEM TOOL~jrr TRANSACTIONSCTK

1. Synopnb
Nested transaction in ISIS. This rnedianism isbse on on fromn IS 1, but doesn't reqieta
You programn using "resilint Ob~ct". The ode hasn't all been poted yet, but it should be
usable sometime in August.

2. in-ar 0

Transaction ontrol-

1* Star a new (sub)transaction 0/
Lbegmn(aborton-failure)

int abor-onjualure;

/0 Commit a (sub)transation .
,1' ~ tmmitO;

/' Abort a (sub)transacton 0/
LbortO;

Accessing files (stable storage)

t..soen(file-.name, bow, fmode)
duar *file..name;

tssize(file-nme)
char *file..nwne;

Lsread(file-name, offset, buffer, len)
diar *file..name, *buffer;

tLswrite(file.name, offset, buffer, len)
char *file-.name, *buffer;

"V Lsfsync(ffle-.name);
char *file...name;

char *file...nwne;

-A mmesing in-core storage trmnsactionay

Lcopen(itent.,n, bow, fmode)
char Oitmn-inme;

ULie(ite1.name fst ufeln

5-,ctas *itemn..name, *buffer;

Sit..cwrite(itemname, offset, bfelen)

-p.

TRAI SCONSO DISTRIBUFED SYSTEM TOOLKIT TRANSAUFONS(K

char Oiten..name, Obuffer;

t.dsync(itemnmne);
d"r itemAame;

t.cclose(item-name)
char 'item.name;

Cncurrn cy cnmtrol
,p.

t.rlock(alist, itenmname, offset)
char IfileA.ame;

t..twlock(alist, item-nme, offset);
d.i *file_name;

Internal, to monitor for commit and abort events

Lmonitor(routine)
int (roui)O;

.out=ome(tid)

trans *tid;

3. Dcumm
t-begin, tcomwr, t-aborr. Although ISIS normally does not run in a transactional mode, the

*'" whole system is compatible with transactions in a way that makes it easy to obtain them, if
desired. To turn on "transactional execution", a routine simply calls tjbegino and later, when it
terminates, either tcommito or LabortO. If a routine is called by another transaction, the result
is a nested transaction. The caller that invokes Lbegin0 should also indicate whether this
(sub)trnsaction should automatically be aborted in the event that the process that did the invoca-
tion should crash, or its site should fail. The only case when abt-onrjailure should ever be false
(0) is when the transaction is being done in a oordinator-cohort computation and some cohort will
take over and run the request forward to completion, doing cuwry what the failed coordinator did
(see the various ISIS papers on roll-forward transactional execution for details). Normally, you
will thus request abortonJailure by setting this flag to true (1). If abortonjfailure is false but
the transaction is not restarted in this manner, your application is quite likely to hang.
L open ... tclose. These routines access a file tnmsactionally, using Lmonitor to detect the ter-
minaton of each transaction or subtransaction automatically. The t-sxxs versions work with disk
files and the L,u versions with in-core data structures. C]hkpoints are needed to recover from
total failures in the latter me; this is automatic when using stable files. They can be called "as is"
(a are?), or can be called from the replication package to implement replicated files (the file
name should refer to a different copy of the file in each replica manager, of course). If used in
this manne, the default broedmt primitive should be CBCASr.
,-.iock, L.wlock. These routines support traractio read (non-exdusive) and write (excusive)
locking, following the standard 2-phue locking protocol. The alist argument indicates where the
lock in question lives. Both give what seems to be "all copies" locking, bit the rlock algorithm
actually is asynchronous, whee the wiock algorithm is a slower syndcroous one. So, read locks

re mud cheaper than write locks in the case of replicated data. Loct of either kind will be reis-
sued silently if requested more than once. Note: read locks are never "broken" by failures in
ISIS. Note: when using wlock on replicated data, take care that all calen of wlock do their wlock
calls in the same order, or deadlock cm result. For example, you could use ABCAST to

S,
"I ' *, . " " " * . ", -" ," " ' " -""' . " . ."" " " " "." "" . ' " """ " " " " . '" ' " . ' '". '" ' " '" " """ ' ': ":

TRACTIONSK) DISTRMIDUTE SYSTEMS TOOLKrr TRANSACTIONS(TK)

implement a group RPC and then have all members cal wiock in paralel on their private data, or
your could use CBCAST to implement the RPC and then employ a coordinator-cohort algorithm,
this time having only the coordinator call wock and specifying the group's id in the slist argu-
ment.

Semaphores can also be used to control ascce to files and data, but they ignore the transactional
scope rules and hence could get you into trouble.

4. Dnrdo. oat Intal re t,es
Transation ids. When running as a tranacton, ctp->task-tid is a pointer to a descriptive struc-
ture dharacterizing the state of the current transaction. This can printed by calling Lrint(ctp-
>tasktid).
t-.mortor. This routine is used internaly by ISIS to watch for the commit or abort of a transaction
that has taken actions in the invoking process. The routine is invoked a:

routine(how)

where the argument how will be one of TCCNI1, TCONMi2, and T.ABORT. The com-
mit phases are the usual ones for a two-phase commit. If you plan to implement your own tran-
sactional storage, then during phase 1, records written by the transction should be forced to
stable storage. If stable storage is not an issue, take no action during phasel commit. During
phase 2, commit records can be written. In a TABORT, the effects of the transaction must be
rolled back. This is all automartc in the case of the stable storage routines provided by the sys-

t_oucome. This routine is used when a site recovers and the stable storage utility discovers that it
crashed during the second phase of the commit protocol for some transaction. If all the sites that
know what this outcome was are down, it could take quite a while for this routine to complete,
and while it is running access to the file the transaction updated is not allowed (both tjrlock and
tLwlock will block). On the other hand, the updated file cn be am ed using tjread and t.write
without acquiring locks if an emergency need to see the contents arises. One would obtain the
contents of the file a if the tramaction did commit in this case. Since the odds are overwhelming
that this is exactly what happened, the behavior that results is probably fine.

There are several cam:
1. In the case where you arranged for the stable storage routines to be called from the repli-

cated data manager, a facility is provided that will automatically being your copy of the file
back into "syne" with any others after recovery. Use the rmr to determine which of the
folowing cas applies. If your progrem is the first to recover from a crash of all members
of the group, it can use its local copy of the file - they will already have been restored to a
consistent state by the transaction faclty. If your program is supposed to rejoin, we
curretly recommend that the entire file be coped from some procs with a copy. A better
medanism will be added someday, but meanwhile this wil have to do.

2. When using the u re storage routimes, recovery depends on how the failure ocrred. If
the failure causes all processes to crash, you must have a deckpoint aound in order to
recover. Assuming that you do, the recovery seque is a above, but using the cdcpoint.
You cn make a eckpoitm anytime the data is idle, but not during a transaction that has
-upded it.

ii,

TRNSn~c DISTRIDUFED SYSTEM~ TODOLKIT TRAPJSAcn'oNscmK

3. In the case where in-co transactional storage is being used and a partial failure takes place,
the state tranfer tool should be used to copy the data from some operational process pos-

* sessing a replica.

. 6. Ewauvan

Transactions are easiest to use if you follow very stylized coding conventions. Some examples to
illustrate the most common cases follow.

6.1. Nos-rplcatad data

6.L. Raplcated data, ru~Mt object style

6.3. RepIcated dab, CIRCUS ayl

6.4. Rhpated data, anft quorum

7. State tnsfers
This will look something like the semaphore state .zer-outhn mechanism.

!l

:5-"

p'-.5

',o

, --2

VSYNC(TK DISTRIBLTFED SYSTEAU TOOLKIT VSYNC(TK

1. S.uq
What's this virtual synchrony business all about anyhow, and whet do I need to do about it?

2. Desd
ADl of MSIS is built using a ollection of broadcast comuncation primitives that, if used crrectly,
provide 'vitull syndhronous" distributed executions. Ibis idea is one we ue throughiout IMS,
and it cngreatly simplify the design of even very igh level softwe.
Figure 1 shows a wanventional distributed exectiomSuch a exection a is daracterized by mes-
sag passing and the dliscovery o(occessional "uzampected" events, sui as cehee, timeouts due
to system overloads and trauient -falures, reception of new "request" messages
Miale pending requests wre stMl underway, mid differences in the perceved system state, from pro-
cesa to proems, even when a ingle event is being observed from multiple perspectives. An
enirowmft like this am is diffiizlt to work with - we cell it a completely asynchron one -

and it provides very little support for the programfer wh must implemenat a distributed applica-
tion progiun.
In Figure 2, a virtually syncroous ezewution is sdown. Such an execution hus the property that
it toobto anobsever (toa pop usig = inpatiular)as if e event takes pace at atime
in the system. That is, if a prom fails, it looks as if no Iemzmiu events were active at the
ine, an everyone mostoing for the failure se it owr"autueul" When a conmmuni-

cation action occus (see BCAST(TK), failures never seem to take place until the messages have
been delivered, and it looks us if no other rmun mtio- was taking plo at the sam tome. In
fact, each message indicates the processes to whidh it was delivered, even though the message may
have been aeedusing proess group us dntioo ad proos groups have dynamically
varying membership. 116 bus several real advantages from the perspective of the programmer

Figure 1: Conventional message-pussing picture of a system

84
- .. .n 72 '

VSYNC(MK DWT31UrVD sysms TooLKIT VSYNC(TK)

who~ worb with MS.
On relates to algorithm design. In MS3, it Is possile to deohac the Inda tha Other procem
will take by jost looking at a mnsage, its domtinations, arnd the 'Utam" of the symma at the tim
the measag arrives. For esinnpie, tis might incude them nbershp (it a proces group
(pg-aHsto insaV grou p view), the sits that we qpmedanl (s-a in a ns iteview), the

cotnsof the u ge, at am miui ppind cew stucture mmintainhmd using the cumfiguratiom
tool (seme CONFIC(TK)). In fac, the stidressm in a prcee-rop or "ft view wre evr orduePd

'accring to kaeitg age, and you m m.i tis in your code. Nforeoveir, aD members of a pro.
em group reeve a broadcat mehsags if my don so0- dn is so and to minniafly make swe
that evuyoms ha thar copy. Flaiy, Pda -1 n- ntiated by a dad prew.. we tinmlnat before
the death is anucd.. for mnnl, If a pmows ud&l have beow iing a brodat or adding
a amb tor a rocess group~ or taking so= other action when it d14, either the atom upletes

-~ before the proce. falur Is, oberved, at th action neiver heppa. at all - the falur prewded it.
Jointly, these speo reafy simpify Ufa: they enim the dbItdabt wmaly neddwhen a
gr oup of processe receve a mesage. ad let eveiryom ac in a coordnated fashon without taking
any acton to acheve the owrclmdcm Of courm, ft my be nemay for group mmna to

-. moitor ame motim., but ;pIpakage tools Ik the wordzmtorwbort meanism
(COORD(MK)) end tdo mcmitting routines (Mpgjm mo In PGO(TWM~K end the watcho, tw

*tint in WATCHTK) make tis amy as possible. Or, on con arrnge for the dient of a group
to take pan in getting a acti daim by simply having all inmberm respond to "thai part' of a
reque:, ad having the clen wo~te response, decde if tm acion really go dma., mod meissu

*the request if naewy.
One hmpfictio of virtual sytadromy Is that nawt INS meims we ortbaomi to each other.
I'- - , ywz cam cambl seaqibre, state rUmfas, end rapfikated data without am medhonism

N impacting much on the others. Of omms, tIs isn't mSW: statw trimstes wiale the sanqpboreis

C1 C 49 1 S2S. ventI

CI - service

C 1 - service

SS 11

CI -* service

S2 S, recovers

S, -0 C,

Co- service

04 Figre 2: Virtual syzacaresy picture with a process group md a few dimats

VSYNC(CK) DISTRIBUTED SYSTEM TOOLIT VSYNC(TK

in use or whale transacom are running cam be a bit awkward. But, mecanisms to avoid these
problems are provided in mnst ces, and bn added in others.

In additon, several of the data structures that ISIS mantm have properties based on virtual syn-
drony. As noted above, everyone sees the maine sequence of pgroup views and site views (see
pg.monitorO and sv.montorO) and within these views, the sequence of a in a pg..alist or
site-id's in an sv-sist are ordered --rding to deereauin age. Moreover, the current pgroup view
at the time a message is received is the some for a1l recipients. hbus, one can receive a message,
check the current view, and then make a decsion in such a way that only one procs is responsi-
ble for executing the message and all others are backups - this is how the coordinator-cohort algo-
rithm is built in ISIS. Once you get used to taking advantage of this qproach, you will see how it
simplifies your code: rather than design a protocol to discuss who should handle a request, you
design a simple local dedsion that everyone who receves the request can execute n parallel, in
such a way that all reach the m decision without manage exchange.

Another advantage to the IMS approach is that there ae genuinely fewer things to worry about
when designing code. Basically, you can use a finite state approac. In a given state, your pro-
gram may:
1. Be waiting for a 1resP to some request (or several, if conairrent tab are runnin).

2. Detect a failu.

3. Receive a new request.
But, since all copies of the propun see these evsts in the "same order", and everyone see every
event that concerns tdon, d is no uncertainty in your code: for each possible event, you simply
specfy the appropate actis and you are finished. Unless you omit the cae of, say, a failure
occurring while your prpu is wAiting for a resae from sme pro s, and this causes a crash
to occur, code that covers the above cames will cover everything necessary for correct performance
in ISIS. In contrast, imagine the uncertainty of executing in a conventional enviromnent Faiures

- may be detected incorrectly, messa may fal to reach some destination, or arrive out of order,
and events may be perceived in different orders by different processes in the system. The sUm-
plest actions are fraught with danger. Many program that am easily be wrintten ISIS are,
for these reasons, nearly impossible to write in any other way!

What does virtual synchrony cost? Well, the ost could be high if you use the most costly broad-
cast primitive (GBCAST) too meually, and this is a major reason for using the toolkit as much as
possible. The tools use the dapest broadcast they cm, and performanxe will be good when you
stick to them -- at least for things that ISIS is good at. These are things like maintai ing repi-
cated or recoverable data structures, syndaronizing actions, and sending requests to servim On
the other hand, bulk data trw es are best accomplished using the state transfer medumm'n or
other non-ISIS mechanisms. With careful attention to design, performuc of an LSIS-based appl-
cation ca be as good or better than for a non-IS application.
What is the minimum you need to understand? Basically, the ISIS user has two kik of decsons
to make. One is to decde how to stuture the opplication into procms grups and procses and
what data structures will be needed Often, the L S toolkit routies ca be used to implement
this structure, following our tutorial epis. bid in many mases you will need to perform "oup
RC" requests. Ibis leak to the mcnd decuio& when sanming a messae, you will need to
decide whether an tmwer is ned mnd bow many m wnw mam (0, 1, n, or ALL). You
win also need to dermie whether the group isaually senitive to the order in wbia it rves
this type of requests - if so, you dould use ABA to send the request, df amn CB S s pre

ferrecL For example, a service that maintains a replicated queue of some sort woauld probably be
'ed using A T: queue order will be the same everywhere if requests arrive everyone n a

'j. fixed order, and thts= exactly what ABCAST provides. On the other hand, a serv~ce that Maurr
tains a database and anwr questions out of it ould normaly be accessed usti CBA per-

"." formance will be better, and in this cow) the order in which queries wrive dom't changle the

.
VSYNCCrK) DIST3IDUTITD SYSTEM TO)LO ar VSYNCCK

answer that should be given. GBCAST is normally used only in the toolkit routines.

Who should aswer a query? The easiest sotution might be for everyow to reply (some replies
might be of the form "I don't know", indiated by calling reply(mp, 0. 0, 0)) Also, keep in mind
that one can reply with fewa than "alen" bytes of reply information (BCAST(TK)). For eum-
ple, if the reply is a byte string, the the first byte could be a cock indicating whether the rest of
the reply conaims valid data. If you prefer to receve a single reply the oxrdbiator-ahort tool
should be used. This has some overhead and the mount of work done by the ncorinator should
be non-trivial to justify paig this added cost. On situation m wtnhd the tool is not recom-
mended aises when the reply will be very large. It might seem like you should use the tool to
avoid wasting "spane" on replies from processes othe than the coorcatw. In fact, however, this
would be just the situaon i which the overhead of the coorinst-coon algorithm turns out to
be largest! The overhead is almost zero, on the othe hand, if the coordnator sends the data
using a CBCAST to the ca1ler anx then replies with a status cde. say an itege
To summarize: virtual syndmony makes the toolkit possble and makes slgothmic desin supns-

. ingly easy in ISIS. The benefits we substani al, but the propmer may be expected to make
some desoin that could affect perform , and to do this ntelligently requires, usom.

. standing of broad t ordffup. We strongly rimmend that you read the ISIS pqpe if this
pplies to you: docume-natao has a role. as do tutorials, but tLe pa s we much more systtmauc

in attmia.g this someumes subtle material.

-.4

I,'

